Bu protokol, daha esnek bir uçuş değirmeni tasarımı oluşturmak için makerspace’lerde bulunan üç boyutlu (3D) yazıcıları ve lazer kesicileri kullanır. Araştırmacılar bu teknolojiyi kullanarak maliyetleri azaltabilir, tasarım esnekliğini artırabilir ve bağlı böcek uçuş çalışmaları için uçuş değirmenlerini inşa ederken tekrarlanabilir işler üretebilirler.
Makerspaces, araştırmacıların ekolojik araştırmalarda yeni teknikler geliştirmelerini ve yeni türlerle çalışmalarını sağlama potansiyeli yüksektir. Bu protokol, nispeten düşük bir maliyetle daha çok yönlü bir uçuş değirmeni oluşturmak için makerspaces’te bulunan teknolojiden nasıl yararlanılacağını göstermektedir. Bu çalışmanın prototipini son on yılda inşa edilen uçuş fabrikalarından çıkardığı göz önüne alındığında, bu protokol daha çok basit, modern uçuş değirmeninden yapılan ayrışmaların ana hatlarını belirlemeye odaklanmaktadır. Önceki çalışmalar, uçuş değirmenlerinin hız, mesafe veya periyodiklik gibi uçuş parametrelerini ölçmek için ne kadar avantajlı olduğunu göstermiştir. Bu tür değirmenler, araştırmacıların bu parametreleri morfolojik, fizyolojik veya genetik faktörlerle ilişkilendirmelerine izin vermektedir. Bu avantajlara ek olarak, bu çalışma, daha esnek, sağlam ve katlanabilir bir uçuş değirmeni tasarımı oluşturmak için teknolojiyi 3D yazıcılar ve lazer kesiciler gibi makerspace’lerde kullanmanın faydalarını ele alıyor. En önemlisi, bu tasarımın 3D baskılı bileşenleri, kullanıcının değirmen kolunun ve kızılötesi (IR) sensörlerin yüksekliklerini ayarlanabilir hale getirerek çeşitli boyutlardaki böcekleri test etmesine izin verir. 3D baskılar ayrıca kullanıcının hızlı depolama veya alana taşıma için makineyi kolayca sökmesini sağlar. Ayrıca, bu çalışma, böcekleri minimum stresle birbirine bağlamak için mıknatısların ve manyetik boyanın daha fazla kullanılmasını sağlar. Son olarak, bu protokol, tek bir kayıt içinde farklılaşabilen uçuş denemelerini verimli bir şekilde ayıran ve analiz eden bilgisayar komut dosyaları aracılığıyla uçuş verilerinin çok yönlü bir analizini detaylandırıyor. Daha yoğun emek sarf etse de, makerspace’lerde ve çevrimiçi 3D modelleme programlarında mevcut araçları uygulamak multidisipliner ve süreç odaklı uygulamaları kolaylaştırır ve araştırmacıların dar ayarlanabilir boyutlara sahip maliyetli, önceden hazırlanmış ürünlerden kaçınmasına yardımcı olur. Bu protokol, makerspace’lerde teknolojinin esnekliğinden ve tekrarlanabilirliğinden yararlanarak yaratıcı uçuş değirmeni tasarımını teşvik eder ve açık bilime ilham verir.
Böceklerin dağılımının sahada ne kadar zor olduğu göz önüne alındığında, uçuş değirmeni önemli bir ekolojik fenomeni ele almak için ortak bir laboratuvar aracı haline gelmiştir – böceklerin nasıl hareket ettiği. Sonuç olarak, uçuşdeğirmeni 1,2,3,4’ün öncüleri 60 yıllık uçuş değirmeni tasarımı ve yapımından bu yana, teknolojiler geliştikçe ve bilimsel topluluklara daha entegre hale geldikçe gözle görülür tasarım kaymaları olmuştur. Zamanla, otomatik veri toplama yazılımı grafik kayıtörlerinin yerini aldı ve uçuş değirmeni kolları cam çubuklardan karbon çubuklara ve çelik borulara geçti5. Sadece son on yılda, manyetik rulmanlar Teflon veya cam rulmanların yerini en uygun şekilde sürtünmesiz olarak aldı ve uçuş değirmeni makineleri ile çok yönlü teknoloji arasındaki çiftler, ses, görsel ve katman imalat teknolojisi araştırmacıların iş akışlarına giderek daha fazla entegre oldukça çoğalıyor. Bu eşleştirmeler, kanat aerodinamik6’yıölçmek için yüksek hızlı video kameralar, işitsel uçuş yanıtlarını incelemek için duyusal ipuçlarını taklit etmek için dijitalden analoga panolar7ve uçuş8sırasında kanat deformasyonunu izlemek için bir kalibrasyon makinesi yapmak için 3D baskı içerir. Makerspaces’te, özellikle de bilgili personel tarafından işletilen dijital medya merkezlerine sahip kurumlarda ortaya çıkan teknolojilerin son zamanlarda artmasıyla9, daha geniş bir böcek yelpazesini test etmek ve cihazı sahaya taşımak için uçuş değirmenini geliştirmek için daha büyük olasılıklar vardır. Ayrıca, araştırmacıların üretim tabanlı çalışma 9 , 10 , 11,12ile disiplin sınırlarını aşmaları ve teknik öğrenmeyi hızlandırmaları için yüksek bir potansiyel vardır. Burada sunulan uçuş değirmeni (Attisano ve meslektaşları13’tenuyarlanmıştır) makerspaces’te bulunan gelişmekte olan teknolojilerden yararlanarak sadece 1’e değil, aynı zamanda ölçekleri ve boyutları eldeki projeye ince ayarlı uçuş değirmeni bileşenleri oluşturmaktan da yararlanır) araştırmacılara yüksek bütçeli veya bilgisayar destekli tasarım (CAD) konusunda herhangi bir özel bilgi talep etmeden lazer kesim ve 3D baskıda erişilebilir bir protokol sunar.
Yeni teknolojileri ve yöntemleri uçuş değirmeni ile bire bağlamanın yararları önemlidir, ancak uçuş değirmenleri de değerli bağımsız makinelerdir. Uçuş değirmenleri böcek uçuş performansını ölçer ve uçuş hızının, mesafesinin veya periyodikliğinin sıcaklık, bağıl nem, mevsim, konak bitki, vücut kütlesi, morfolojik özellikler, yaş ve üreme aktivitesi gibi çevresel veya ekolojik faktörlerle nasıl ilişkili olduğunu belirlemek için kullanılır. Aktograflar, koşu bantları ve rüzgar tünellerinde ve kapalı arenalarda uçuş hareketinin video kaydı gibi alternatif yöntemlerden farklı olarak14, uçuş değirmeni laboratuvar koşullarında çeşitli uçuş performansı istatistiklerini toplama yeteneği ile dikkat çekiyor. Bu, ekologların uçuş dağılımıyla ilgili önemli soruları ele almalarına yardımcı olur ve disiplinlerinde ilerlemelerine yardımcı olur – entegre haşere yönetimi15,16,17, nüfus dinamikleri, genetik, biyogeografi, yaşam öyküsü stratejileri18veya fenotipik plastisite19,20,21,22 . Öte yandan, yüksek hızlı kameralar ve aktograflar gibi cihazlar sıkı, karmaşık ve pahalı bir kurulum gerektirebilir, ancak kanat çırpma frekansları ve böcek fotofaz aktivitesi23,24gibi daha ince ayarlı hareket parametrelerine de yol açabilir. Bu nedenle, burada sunulan uçuş değirmeni, araştırmacıların uçuş davranışını araştırması için esnek, uygun fiyatlı ve özelleştirilebilir bir seçenek olarak hizmet vermektedir.
Aynı şekilde, gelişmekte olan teknolojileri ekologların iş akışına entegre etme teşviki, dağılım çalışmalarına yönelik sorular ve yaklaşımlar daha yaratıcı ve karmaşık hale geldikçe artmaya devam ediyor. İnovasyonu teşvik eden konumlar olarak, makerspaces birden fazla uzmanlık seviyesine sahiptir ve her yaştan kullanıcının yeni teknik beceriler kazanması için düşük bir öğrenme eğrisi sunar10,12. Bilimsel cihazları makerspace’de ve çevrimiçi açık kaynaklar aracılığıyla prototiplemenin yinelemeli ve işbirlikçi doğası, teori11’in uygulanmasını hızlandırabilir ve ekolojik bilimlerde ürün geliştirmeyi kolaylaştırabilir. Ayrıca, bilimsel araçların tekrarlanabilirliğini artırmak, daha geniş veri toplamayı ve açık bilimi teşvik edecektir. Bu, araştırmacıların dağınıklık ölçümü için ekipmanı veya yöntemleri standartlaştırmaya yardımcı olabilir. Standartlaştırma araçları, ekologların dispersiyon çekirdekleri25 veya kaynak-lavabo kolonizasyon dinamiklerinden26’dangelişen metapopülasyon modellerini test etmek için popülasyonlar arasında dağılım verilerini birleştirmelerine daha fazla izin verebilir. Tıp camiasının hasta bakımı ve anatomi eğitimi için 3D baskıyı nasıl benimsediği gibi27, ekologlar ekolojik araçları ve eğitimi yeniden tasarlamak için lazer kesiciler ve 3D yazıcılar kullanabilir ve bu çalışma kapsamında iniş platformları veya dikey hareket edebilen bir uçuş değirmeni kolu gibi ek uçuş değirmeni bileşenleri tasarlayabilir. Buna karşılık, makerspace teknolojisinin sunduğu özelleştirme, maliyet etkinliği ve artan verimlilik, kendi araçlarını ve cihazlarını geliştirmek isteyen araştırmacılar için nispeten düşük bir bariyerle dağıtım projelerinin başlatılmasına yardımcı olabilir.
Bu uçuş değirmenini inşa etmek için, üretici tarafından düşünülebilecek mekanik ve enstrümantal sınırlamalar da vardır. Mıknatıslar ve 3D baskılı geliştirmeler, uçuş değirmeninin çapraz braketlerin inşası dışında esasen tutkalsız olmasını ve farklı boyutlardaki böceklere eşlik etmesini sağlar. Bununla birlikte, böceklerin kütlesi ve gücü arttıkça, böceklerin bağlıyken kendilerini sökme olasılığı daha yüksektir. Güçlü mıknatıslar artan burulma sürüklemesi pahasına kullanılabilir veya bilyalı rulmanlar, birkaç gram ağırlığındaki uçuş testi böcekleri için sağlam bir çözüm olarak manyetik rulmanların yerini alabilir28,29. Bununla birlikte, bilyalı rulmanlar da bazı sorunlara neden olabilir, esas olarak yüksek hızlarda ve yüksek sıcaklıklarda uzun süreli deneyler çalıştırmak, sürtünmeyi artıran bilyalı rulmanların yağlamasını bozabilir30. Böylece, kullanıcılar hangi uçuş değirmeni mekaniğinin çalışma ve deneysel tasarım böceklerine en uygun olacağını ayırt etmek zorunda kalacaktır.
Benzer şekilde, bu makalenin dikkate alınmayan bir uçuş değirmeni enstrümantetmenin birkaç yolu vardır. Burada sunulan uçuş değirmeni, devrimleri algılamak için IR sensörlerini, devrimleri kaydetmek için WinDAQ yazılımını ve ham verileri işlemek için komut dosyalarını programlamayı kullanır. Kullanımı kolay olmasına rağmen, WinDAQ yazılımı sınırlı sayıda alete sahiptir. Kullanıcılar ilgili kanallarına yorum ekleyemez ve devrenin herhangi bir bileşeni başarısız olursa uyarılamazlar. Bu durumlar, kod aracılığıyla algılanıp düzeltildikten sonra, ancak veri toplama işleminden sonra çözülür. Alternatif olarak, kullanıcılar özelleştirilebilir veri toplama özellikleri sunan birden fazla yazılım benimseyebilir28 veya bisiklet milometreleri29gibi doğrudan hız ve mesafe istatistikleri alan sensörler . Ancak, bu alternatifler çok fazla yazılım uygulamasında değerli ham verileri atlayabilir veya işlevselliği dağıtabilir, bu da veri işlemeyi verimsiz hale getirebilir. Sonuç olarak, bu protokol uçuş değirmeni enstrümantasyonunu yeniden havalandırmak yerine, günümüz yazılım sınırlamalarına sağlam programlama çözümleri sunar.
Bu makalede, araştırmacılara dağılım çalışmalarında yardımcı olmak ve gelişmekte olan teknolojilerin davranışsal ekoloji alanına dahil olmasını teşvik etmek için gelişmiş basit bir uçuş değirmeni için bir tasarım açıklanmıştır. Bu uçuş değirmeni bir inkübatörün kısıtlamalarına uyar, aynı anda sekiz böcek tutar ve veri toplama ve işlemeyi otomatikleştirir. Özellikle, 3D baskılı geliştirmeleri, kullanıcının çeşitli boyutlardaki böcekleri test etmek ve cihazı hızlı depolama veya taşıma için sökmek için freze kolunu ve IR sensör yüksekliklerini ayarlamasını sağlar. Ortak bir makerspace’e kurumsal erişim sayesinde, tüm geliştirmeler ücretsizdi ve basit, modern uçuş değirmenine kıyasla ek maliyet tahakkuk ettirilmedi. Gerekli tüm yazılımlar ücretsizdir, elektronik devre basittir ve tüm komut dosyaları deneysel tasarımın özel ihtiyaçlarını takip edecek şekilde değiştirilebilir. Ayrıca, kodlanmış tanılama, kullanıcının kayıtlarının bütünlüğünü ve hassasiyetini kontrol etmesine izin verir. Son olarak, bu protokol, böcekleri değirmen koluna manyetik olarak boyayarak ve bağlayarak bir böceğin sürdürdüğü stresi en aza indirir. Basit uçuş değirmeninin montajının zaten erişilebilir, uygun fiyatlı ve esnek olmasıyla, basit uçuş değirmenini geliştirmek için makerspace teknolojilerinin kullanılması, araştırmacılara kendi özel uçuş çalışması ihtiyaçlarının üstesinden gelmeleri için alan sağlayabilir ve bu makalenin dikkate alınmazlarının ötesinde yaratıcı uçuş değirmeni tasarımlarına ilham verebilir.
Basit, modern uçuş değirmeni, birden fazla böceği verimli ve uygun maliyetli bir şekilde test eden güvenilir ve otomatik bir tasarım sunarak bağlı böcek uçuşunu incelemek isteyen araştırmacılar için bir dizi avantaj sağlar13,31,35. Aynı şekilde, araştırmacıların ekolojik sistemleri incelemek için deneysel araçlar oluşturmak için endüstri ve diğer bilimsel alanlardan hızlı gelişen teknoloji ve tek…
The authors have nothing to disclose.
Meredith Cenzer’e tüm uçuş değirmeni malzemelerini satın alan ve inşaattan projenin yazılmasına kadar sürekli geri bildirim sağladığı için teşekkür ederim. Ana Silberg’e de standardize_troughs.py katkılarından dolayı teşekkür ediyorum. Son olarak, Chicago Üniversitesi’ndeki Medya Sanatları, Veri ve Tasarım Merkezi’ne (MADD) ortak makerspace ekipmanlarını, teknolojisini ve malzemelerini ücretsiz kullanma izni için teşekkür ediyorum.
180 Ω Resistor | E-Projects | 10EP514180R | Carbon film; stiff 24 gauge lead. |
19 Gauge Non-Magnetic Hypodermic Steel Tubing | MicroGroup | 304H19RW | |
2.2 kΩ Resistor | Adafruit | 2782 | Carbon film; stiff 24 gauge lead. |
3D Printer | FlashForge | 700355100638 | |
3D Printer Filament | FlashForge | 700355100638 | Diameter 1.75 mm; 1kg/roll. |
3D Printing Slicing Software | FlashPrint | 4.4.0 | |
Acrylic Plastic Sheets | Blick Art Supplies | 28945-1006 | |
Aluminum Foil | Target | 253-01-0860 | |
Breadboard Power Supply | HandsOn Tech | MDU1025 | Can take 6.5V to 12V input and can produce 3.3V and 5V. |
DI-1100 USB Data Logger | DATAQ Instruments | DI-1100 | Has 4 differential armored analog inputs. |
Electrical Wires | Striveday | B077HWS5XV | 24 gauge solid wire. |
Entomological Pins | BioQuip | 1208S2 | Size 2; diameter 0.45 mm. |
Filtered 20 uL Pipette Tip | Fisher Scientific | 21-402-550 | |
Hot Glue Gun with Hot Glue | Joann Fabrics | 17366956 | |
IR Sensor | Adafruit | 2167 | This is the 3 mm IR version; works up to 25 cm. |
Large Clear Vinyl Tubing | Home Depot | T10007008 | Inner diameter 3/8 in; outer diameter 1/2 in; length 20 ft. |
Large Magnets | Bunting | EP654 | Low-friction N42 neodymium; diameter 0.394 in; length 0.157 in; holding force 4.9 lb. |
Laser Cutter | Universal Laser Systems | PLS6.75 | |
M5 Hex Nut | Home Depot | 204274112 | Thread pitch 0.8 mm; screw length 20 mm; diameter 5 mm. |
M5 Long Iron Screws | Home Depot | 204283784 | Philips pan head; thread pitch 0.8 mm; screw length 20 mm; diameter 5 mm. |
M5 Short Iron Screws | Home Depot | 203540129 | Philips pan head; thread pitch 0.8 mm; screw length 10 mm; diameter 5 mm. |
Neoprene Rubber Sheet | Grainger | 60DC16 | Length 12 in; width 12 in; depth 1/8in. |
Online 3D Modeling Software | Autodesk | 2019_10_14 | Tinkercad.com offers a free account. |
Power Adaptor | Adafruit | 63 | 9 VDC 1000mA regulated switching; input voltage DC 3.3V 5V. |
Small Clear Vinyl Tubing | Home Depot | T10007005 | Inner diameter 1/4 in; outer diameter 3/8 in; 20 ft long. |
Small Magnets | Bunting | N42P120060 | Low-friction N42 neodymium; diameter 0.120 in; length 0.060 in; holding force 0.5 lb. |
Solderless MB-102 Breadboard | Adafruit | 239 | 830 tie points; length 17 cm; width 5.5 cm; input voltage, DC 3.3 V 5 V. |
Sophisticated Finishes Iron Metallic Surfacer | Blick Art Supplies | 27105-2584 | |
Wire Cutters | Target | 84-031W |