Ce protocole décrit l’évaluation de l’état redox subcellulaire spécifique au compartiment dans la cellule. Une sonde fluorescente sensible au redox permet une analyse ratiométrique pratique dans les cellules intactes.
La mesure de l’équilibre oxydation/réduction intracellulaire donne une vue d’ensemble du statut physiologique et/ou pathophysiologique redox d’un organisme. Les thiols sont particulièrement importants pour éclairer le statut redox des cellules par l’intermédiaire de leurs rapports réduits de dithiol et de disulfure oxydé. Les protéines fluorescentes contenant de la cystéine d’ingénierie ouvrent une nouvelle ère pour les biocapteurs sensibles au redox. L’une d’entre elles, la protéine fluorescente verte sensible au redox (roGFP), peut facilement être introduite dans les cellules avec transduction adénovirale, permettant d’évaluer le statut redox des compartiments subcellulaires sans perturber les processus cellulaires. Les cysteines réduites et les cystines oxydées de roGFP ont des maxima d’excitation à 488 nm et 405 nm, respectivement, avec l’émission à 525 nm. L’évaluation des ratios de ces formes réduites et oxydées permet le calcul pratique de l’équilibre redox dans la cellule. Dans cet article de méthode, les cellules humaines immortalisées de cancer du sein triple-négative (MDA-MB-231) ont été employées pour évaluer le statut de redox dans la cellule vivante. Les étapes de protocole incluent la transduction de ligne cellulaire MDA-MB-231 avec l’adénovirus pour exprimer le roGFP cytosolique, le traitement avec H2O2,et l’évaluation du rapport de cystéine et de cystine avec la cytométrie de flux et la microscopie de fluorescence.
Le stress oxydatif a été défini en 1985 par Helmut Sies comme « une perturbation de l’équilibre prooxydant-antioxydant en faveur de l’ancien »1, et une pléthore de recherches ont été menées pour obtenir le statut de redox spécifique à la maladie, à la nutrition et au vieillissement des organismes1,2,3. Depuis lors, la compréhension du stress oxydatif est devenue plus large. Tester les hypothèses d’utilisation d’antioxydants contre les maladies et / ou le vieillissement a montré que le stress oxydatif non seulement provoque des dommages, mais a également d’autres rôles dans les cellules. En outre, les scientifiques ont montré que les radicaux libres jouent un rôle important pour la transduction du signal2. Toutes ces études renforcent l’importance de déterminer les changements dans le rapport réduction-oxydation (redox) des macromolécules. L’activité enzymatique, les antioxydants et/ou les oxydants, et les produits d’oxydation peuvent être évalués avec diverses méthodes. Parmi ceux-ci, les méthodes qui déterminent l’oxydation du thiol sont sans doute les plus utilisées parce qu’elles rendent compte de l’équilibre entre les antioxydants et les prooxidants dans les cellules, ainsi que les organismes4. Plus précisément, les rapports entre le glutathion (GRATHione disulfure (GSSG) et/ou la cystéine (CyS)/cystine (CySS) sont utilisés comme biomarqueurs pour surveiller l’état redox des organismes2.
Les méthodes utilisées pour évaluer l’équilibre entre les prooxydants et les antioxydants reposent principalement sur les niveaux de protéines réduites/oxydées ou de petites molécules dans les cellules. Les taches occidentales et la spectrométrie de masse sont utilisées pour évaluer de façon générale les ratios de macromolécules réduites/oxydées (protéines, lipides, etc.), et les ratios GSH/GSSG peuvent être évalués avec spectrophotométrie5. Une caractéristique commune de ces méthodes est la perturbation physique du système par la lyse cellulaire et/ou l’homogénéisation des tissus. Ces analyses deviennent également difficiles lorsqu’il est nécessaire de mesurer l’état d’oxydation des différents compartiments cellulaires. Toutes ces perturbations causent des artefacts dans l’environnement d’essai.
Les protéines fluorescentes sensibles à Redox ont ouvert une ère avantageuse pour évaluer l’équilibre redox sans causer de perturbation dans les cellules6. Ils peuvent cibler différents compartiments intracellulaires, permettant la quantification d’activités spécifiques au compartiment (p. ex., l’analyse de l’état redox des mitochondries et du cytosol) pour étudier le croisement entre les organites cellulaires. Les protéines fluorescentes jaunes (YFP), les protéines fluorescentes vertes (GFP) et les protéines HyPeR sont examinées par Meyer et ses collègues6. Parmi ces protéines, les résidus de GFP (roGFP) sensibles au redox (roGFP) sont uniques en raison des différentes lectures fluorescentes de ses résidus de CyS (ex. 488 nm/em. 525 nm) et de CySS (ex. 405 nm/525 nm), ce qui permet l’analyse ratiométrique, contrairement à d’autres protéines sensibles au redox comme YFP7,8. La sortie ratiométrique est précieuse car elle contrebalance les différences entre les niveaux d’expression, les sensibilités de détection et le photobleaching8. Les compartiments subcellulaires des cellules (cytosol, mitochondries, noyau) ou de différents organismes (bactéries ainsi que cellules de mammifères) peuvent être ciblés en modifiant le roGFP7,9,10.
Les tests roGFP sont effectués à l’aide de techniques d’imagerie fluorescente, en particulier pour des expériences de visualisation en temps réel. Des analyses cytométriques de flux de roGFP sont également possibles pour des expériences avec des points de temps prédéterminés. L’article actuel décrit à la fois l’utilisation de la microscopie fluorescente et de la cytométrie de flux pour effectuer une évaluation ratiométrique du statut de redox dans les cellules de mammifères surexprimant le roGFP (ciblé au cytosol) par transduction adénovirale.
L’équilibre thiol/disulfide dans un organisme reflète le statut redox des cellules. Les organismes vivants ont le glutathion, la cystéine, les thiols protéiques et les thiols à faible poids moléculaire, qui sont tous affectés par le niveau d’oxydation et l’écho du statut redox des cellules4. Les ropFPs conçus permettent la quantification non perturbatrice de l’équilibre thiol/disulfure via leurs résidus de CyS7. La propriété ratiométrique du roGFP four…
The authors have nothing to disclose.
La construction et l’adénovirus recombinant pour l’expression du roGFP spécifique au cytosol dans les cellules ont été générés dans le laboratoire de Paul T. Schumacker, PhD, Freiberg School of Medicine, Northwestern University, et ViraQuest Inc., respectivement. Cette étude a été soutenue par le Center for Studies of Host Response to Cancer Therapy grant P20GM109005 par l’intermédiaire du NIH National Institute of General Medical Sciences Centers of Biomedical Research Excellence (COBRE NIGMS), National Institute of General Medical Sciences Systems Pharmacology and Toxicology Training Program grant T32 GM106999, UAMS Foundation/Medical Research Endowment Award AWD00053956, UAMS Year-End Chancellor’s Awards AWD00053484. L’installation de base de cytométrie de flux a été soutenue en partie par le Center for Microin microbicetal Pathogenesis et host Inflammant Responses grant P20GM103625 par l’intermédiaire du COBRE NIGMS. Le contenu est uniquement de la responsabilité des auteurs et ne représente pas nécessairement les vues officielles des NIH. L’ATA a reçu le soutien du Conseil de recherche scientifique et technologique de Turquie (TUBITAK) 2214-A.
0.25% Trypsin-EDTA | Gibco by Life Sciences | 25200-056 | Cell culture |
4-well chamber slide | Thermo Scientific | 154526 | Cell seeding material for fluorescent imaging |
5 ml tubes with cell strainer cap | Falcon | 352235 | Single cell suspension tube for flow cytometry analysis |
6-well plate | Corning | 353046 | Cell seeding material for flow cytometry analysis |
15 ml conical tubes | MidSci | C15B | Cell culture |
75 cm2 ventilated cap tissue culture flasks | Corning | 4306414 | Cell culture |
Adenoviral cytosol specific roGFP | ViraQuest | VQAd roGFP | roGFP construct kindly provided by Dr. Schumaker |
Class II, Type A2 Safety Hood Cabinet | Thermo Scientific | 1300 Series A2 | Cell culture |
Countess automated cell counter | Invitrogen | C10227 | Cell counting |
Countess cell counter chamber slides | Invitrogen | C10283 | Cell counting |
DMEM | Gibco by Life Sciences | 11995-065 | Cell culture |
FBS | Atlanta Biologicals | S11150 | Cell culture |
Filtered pipette tips, sterile, 20 µl | Fisherbrand | 02-717-161 | Cell culture |
Filtered pipette tips, sterile, 1000 µl | Fisherbrand | 02-717-166 | Cell culture |
Flow Cytometer | BD Biosciences | LSRFortessa | Instrument equipped with FITC and BV510 bandpass filters for flow cytometry analyses |
Fluorescent Microscope | Advanced Microscopy Group (AMG) | Evos FL | Fluorescent imaging |
Hydrogen Peroxide 30% | Fisher Scientific | H325-100 | Positive control |
Light Cube, Custom | Life Sciences | CUB0037 | Fluorescent imaging of roGFP expressing cells (ex 405 nm) |
Light Cube, GFP | Thermo Scientific | AMEP4651 | Fluorescent imaging of roGFP expressing cells (ex 488 nm) |
MDA-MB-231 | American Tissue Culture Collection | HTB-26 | Human epithelial breast cancer cell line |
Microcentrifuge tubes, 2 ml | Grenier Bio-One | 623201 | Cell culture |
PBS | Gibco by Life Sciences | 10010-023 | Cell culture |
Pipet controller | Drummond | Hood Mate Model 360 | Cell culture |
Serologycal pipet, 1 ml | Fisherbrand | 13-678-11B | Cell culture |
Serologycal pipet, 5 ml | Fisherbrand | 13-678-11D | Cell culture |
Serologycal pipet, 10 ml | Fisherbrand | 13-678-11E | Cell culture |
Tissue Culture Incubator | Thermo Scientific | HERACell 150i | CO2 incubator for cell culture |
Trypan blue stain 0.4% | Invitrogen | T10282 | Cell counting |