This protocol describes the assessment of subcellular compartment-specific redox status within the cell. A redox-sensitive fluorescent probe allows convenient ratiometric analysis in intact cells.
Measuring the intracellular oxidation/reduction balance provides an overview of the physiological and/or pathophysiological redox status of an organism. Thiols are especially important for illuminating the redox status of cells via their reduced dithiol and oxidized disulfide ratios. Engineered cysteine-containing fluorescent proteins open a new era for redox-sensitive biosensors. One of them, redox-sensitive green fluorescent protein (roGFP), can easily be introduced into cells with adenoviral transduction, allowing the redox status of subcellular compartments to be evaluated without disrupting cellular processes. Reduced cysteines and oxidized cystines of roGFP have excitation maxima at 488 nm and 405 nm, respectively, with emission at 525 nm. Assessing the ratios of these reduced and oxidized forms allows the convenient calculation of redox balance within the cell. In this method article, immortalized human triple-negative breast cancer cells (MDA-MB-231) were used to assess redox status within the living cell. The protocol steps include MDA-MB-231 cell line transduction with adenovirus to express cytosolic roGFP, treatment with H2O2, and assessment of cysteine and cystine ratio with both flow cytometry and fluorescence microscopy.
Oxidative stress was defined in 1985 by Helmut Sies as “a disturbance in prooxidant–antioxidant balance in favor of the former”1, and a plethora of research has been conducted to obtain disease-, nutrition-, and aging-specific redox status of organisms1,2,3. Since then, the understanding of oxidative stress has become broader. Testing the hypotheses of using antioxidants against diseases and/or aging has shown that oxidative stress not only causes harm but also has other roles in cells. Furthermore, scientists have shown that free radicals play an important role for signal transduction2. All of these studies strengthen the importance of determining the changes in reduction-oxidation (redox) ratio of macromolecules. Enzyme activity, antioxidants and/or oxidants, and oxidation products can be assessed with various methods. Among these, methods that determine thiol oxidation are arguably the most used because they report on the balance between antioxidants and prooxidants in cells, as well as organisms4. Specifically, ratios between glutathione (GSH)/glutathione disulfide (GSSG) and/or cysteine (CyS)/cystine (CySS) are used as biomarkers for monitoring the redox status of organisms2.
Methods used for assaying the balance between prooxidants and antioxidants rely mainly on the levels of reduced/oxidized proteins or small molecules within cells. Western blots and mass spectrometry are used to broadly assess the ratios of reduced/oxidized macromolecules (protein, lipids etc.), and GSH/GSSG ratios can be assessed with spectrophotometry5. A common feature of these methods is the physical perturbation of the system by cell lysis and/or tissue homogenization. These analyses also become challenging when it is necessary to measure the oxidation status of different cellular compartments. All of these perturbations cause artifacts in the assay environment.
Redox-sensitive fluorescent proteins opened an advantageous era for evaluating the redox balance without causing a disturbance in the cells6. They can target different intracellular compartments, allowing the quantification of compartment-specific activities (e.g., assaying the redox state of mitochondria and the cytosol) to investigate crosstalk between cellular organelles. Yellow fluorescent protein (YFP), green fluorescent protein (GFP), and HyPeR proteins are reviewed by Meyer and colleagues6. Among these proteins, redox-sensitive GFP (roGFP) is unique due to different fluorescent readouts of its CyS (ex. 488 nm/em. 525 nm) and CySS (ex. 405 nm/525 nm) residues, which permits ratiometric analysis, unlike other redox-sensitive proteins such as YFP7,8. Ratiometric output is valuable because it counterbalances the differences between expression levels, detection sensitivities, and photobleaching8. Subcellular compartments of cells (cytosol, mitochondria, nucleus) or different organisms (bacteria as well as mammalian cells) can be targeted by modifying roGFP7,9,10.
roGFP assays are conducted using fluorescent imaging techniques, especially for real-time visualization experiments. Flow cytometric analyses of roGFPs are also possible for experiments with predetermined time points. The current article describes both the use of fluorescent microscopy and flow cytometry to perform a ratiometric assessment of redox status in mammalian cells overexpressing roGFP (targeted to cytosol) via adenoviral transduction.
NOTE: This protocol was optimized for 70%–80% confluent MDA-MB-231 cells. For other cell lines, the number of cells and multiplicity of infection (MOI) should be reoptimized.
1. Preparation of cells (day 1)
2. Adenoviral roGFP transduction (day 2 and 3)
CAUTION: Adenoviruses can cause diseases. While transducing the cells, use filtered tips and decontaminate tips, Pasteur pipettes, and microcentrifuge tubes with 10% bleach.
NOTE: This protocol was demonstrated with cytosol-specific roGFP, but other cellular compartments (e.g., mitochondria or mitochondrial intermembrane space) can be targeted with this same protocol.
3. Acquisition of CyS/CySS balance
4. Data analysis
The redox state of CyS/CySS is easily assayed with transduced roGFPs. The fluorescent probe quantifies the ratio between the reduced and oxidized forms (excitation wavelengths 488 nm and 405 nm, respectively). Fluorescence data can be obtained by both flow cytometry and microscopy.
A large number of cells can consistently and conveniently be acquired using flow cytometry. The analysis consists of 3 main steps: 1) select the cell population of interest with the FSC area filter (Figure 1A); 2) gate the roGFP-expressing cells with ex. 488/em. 525 nm with a selective bandpass filter (Figure 1B); and 3) gate the oxidized roGFP-containing cells from the roGFP-expressing cells with ex. 405 nm/em. 525 nm bandpass filter (Figure 1C).
Each new cell line should be evaluated for the optimum adenoviral transduction efficiency of roGFPs. Transduction efficiency should be assessed with morphological evaluation of cells and roGFP expression analyses with flow cytometry and/or fluorescent microscopy. This protocol uses flow cytometry to determine the dose-response curve for roGFP analyses and to select the most efficient MOI input (Figure 2A−H). According to the MOI dose-response curve (Figure 2I), 200 MOI gave the highest roGFP expression, but cell morphology was affected, suggesting cytotoxicity. Therefore, the optimum transduction efficiency was determined to be with 100 MOI.
To evaluate the effectiveness of the method, H2O2 was used as a positive control for oxidation. One hundred MOI was used for optimum transduction. After the recovery period, cells were treated with 10 µM H2O2 for 1 h to obtain the fluorescence ratio via flow cytometry. Oxidized (ex. 405 nm/em. 525nm) and reduced (ex. 488 nm/em. 525 nm) roGFP mean fluorescence intensities were obtained from flow cytometry analyses for vehicle (Figure 3A, B) and 10 µM H2O2 (Figure 3C, D) treatments. The overlaid histograms represent the shift in the cell numbers of 10 µM H2O2 and vehicle treated groups for reduced (Figure 3E) and oxidized (Figure 3F) roGFP. The ratio between oxidized and reduced roGFP shows that 10 µM H2O2 caused a 3-fold increase in oxidation of roGFP compared to vehicle treatment (Figure 3G).
Fluorescent imaging of cells was also performed with 10 µM H2O2 under the microscope for 1 h. Images were taken under the 4x objective, and representative images were taken under the 20x objective (Figure 4A). Fluorescent intensities were evaluated with ImageJ software, and ratios were calculated. A steady state increase in H2O2-induced oxidation was detected (Figure 4B); incubation with H2O2 for 1 h increased the oxidization of roGFP cysteines, which exhibited significant change between vehicle controls.
Figure 1: Gating setup for fluorescent intensities of CyS-containing (reduced) roGFP and CySS-containing (oxidized) roGFP residues with non-transduced MDA-MB-231 cells. (A) The cell population of interest was selected as Gate 1 with SSC and FSC area filters. (B) roGFP-expressing cells were selected according to non-expressing cells as Gate 2 with the ex. 488/em. 525 nm bandpass filter. (C) Oxidized (cystine) roGFP-containing cells were gated with the ex. 405 nm/em. 525 nm bandpass filter from the roGFP-expressing population. Please click here to view a larger version of this figure.
Figure 2: MOI dose-response curve assessment with flow cytometry analyses for MDA-MB-231 cell line. (A,B) Noninfected cells and (C,D) 50 MOI, (E,F) 100 MOI, and (G,H) 200 MOI roGFP-expressing cell populations acquired for gating setup, respectively. (I) Transduced cells were evaluated and plotted as a percentage according to the cell population of interest. Please click here to view a larger version of this figure.
Figure 3: Flow cytometry assessment of CyS/CySS balance in roGFP-transduced MDA-MB-231 cell line. Vehicle-treated cells were evaluated as (A) % roGFP-expressing cells, and (B) % oxidized roGFP-expressing cells and H2O2 treatment were assessed with the same parameters in panels (C) and (D) respectively. Cell count histograms of vehicle and H2O2 treatment were overlaid for (E) reduced roGFP ex. 488/em. 525 bandpass filter and (F) oxidized roGFP ex. 405/em. 525 bandpass filter. (G) Mean fluorescence intensity ratios between oxidized/reduced forms were plotted into a bar graph. Please click here to view a larger version of this figure.
Figure 4: Fluorescent imaging of roGFP-transduced MDA-MB-231. (A) Representative images after 1 h treatment with vehicle or H2O2. (B) Ratios between oxidized/reduced forms were evaluated in 4 randomly chosen areas, and bars represent mean ± standard deviation. Statistical significance between groups indicated as *(p < 0.05), **(p < 0.01), or ***(p < 0.005). Please click here to view a larger version of this figure.
Analysis type | Cell number per well | Adenoviral roGFP PFU/mL | 1:100 dilution of adenoviral roGFP PFU/mL | MOI | Transduction volume (mL) |
Flow cytometry | 150,000 | 6 x 1010 | 6 x 108 | 0 | 0 |
50 | 0.0125 | ||||
100 | 0.025 | ||||
200 | 0.05 | ||||
Fluorescence microscopy | 25,000 | 6 x 1010 | 6 x 108 | 100 | 0.0042 |
Table 1: Calculation of MOI values.
The thiol/disulfide balance in an organism reflects the redox status of cells. Living organisms have glutathione, cysteine, protein thiols, and low-molecular-weight thiols, all of which are affected by the level of oxidation and echo the redox status of cells4. Engineered roGFPs allow the non-disruptive quantification of the thiol/disulfide balance via their CyS residues7. The ratiometric property of roGFP provides reliable redox measurements for mammalian cells. roGFP can be easily introduced into cells with transfection methods and/or transduction vectors, but adenoviral transduction has higher efficiency.
The redox status of cells is easily affected by the cellular environment (e.g., confluency of cells and volume of medium). For this protocol, the optimized cell seeding confluency was determined to be 60%–70%, with 15,000 cells per cm2; on the day of analysis, cells were 70%–80% confluent. However, cell morphology and doubling time differ between cell lines. For this reason, if the researcher intends to use another cell line, cell confluency should be adjusted while acquiring measurements with flow cytometry and/or fluorescence microscopy; this will ensure accurate results based on their experimental design and needs.
roGFPs can be easily introduced to cells with multiple transfection methods and/or transduction vectors. The current protocol uses the cytosol-specific roGFP construct, which is transduced into cells with an adenovirus. Before starting an experiment, it is essential to determine the MOI dose-response for a cell line; this allows the determination of maximum transduction efficiency with minimal cell toxicity in order to design the optimal, reproducible protocol.
The CyS/CySS status of roGFP-transduced cells can be assessed with both fluorescent imaging and flow cytometry. Both analyses have their pros and cons; flow cytometry allows for a larger cell population to be quickly evaluated, but fluorescence imaging has higher sensitivity to roGFP-specific cells. Furthermore, it also confirms the correct subcellular localization of GFP (e.g., cytosolic versus mitochondrial). Here, both flow cytometry and fluorescent imaging were used by the researchers. Although H2O2 is considered a weak oxidant for the roGFP construct7, the protocol demonstrated that both methods are sensitive enough to detect ratiometric changes between oxidized and reduced forms of roGFP after H2O2 treatment.
This roGFP protocol can be used to determine the redox status of different mammalian cell types. To understand menadione-induced cardiomyocyte death in the context of prooxidant/antioxidant balance, Loor and colleagues used both cytosolic and mitochondrial roGFP labelling in cardiomyocytes12. roGFP allows the visualization of the redox status of cells while they are alive, and the compartment-specific targeting enables a better understanding of diseases. Esposito and colleagues reviewed the use of roGFP to determine the redox status of cells in neurodegenerative diseases13. Because roGFP transduction into different organisms, including plants14 and bacteria9, is easily accomplished, monitoring the redox status of both bacterial and host cells during disease states could facilitate innovative treatment approaches. Furthermore, in vivo studies conducted with compartment-specific roGFP in transgenic animals may shed light on the redox status of organisms15,16.
However, in certain situations, the roGFP biosensor is inadequate for investigating physiologically relevant redox changes5 and H2O2 oxidation7 within cells. Peroxidase selectivity for H2O2 was used to engineer more sensitive probes6. Yeast peroxidase ORP1 was linked to roGFP to enable the delicate measurement of H2O2-mediated thiol oxidation17,18,19. Likewise, the incorporation of human glutaredoxin (Grx1) into the roGFP sensor specifically monitors GSH/GSSG equilibrium within the cell compartments6,18,19.
This easily applicable protocol allows researchers to monitor compartment-specific redox status in intact cells, minimizing artifactual oxidation due to physical stress during cell homogenization. The current protocol demonstrates 2 quantification methods: flow cytometry (beneficial for quick analyses of large cell populations) and fluorescent microscopy (allowing for continuous time-lapse imaging and determining the morphology of the cells).
The authors have nothing to disclose.
The construct and recombinant adenovirus for expressing cytosol-specific roGFP in cells were generated in the laboratory of Paul T. Schumacker, PhD, Freiberg School of Medicine, Northwestern University, and ViraQuest Inc., respectively. This study was supported by the Center for Studies of Host Response to Cancer Therapy grant P20GM109005 through the NIH National Institute of General Medical Sciences Centers of Biomedical Research Excellence (COBRE NIGMS), National Institute of General Medical Sciences Systems Pharmacology and Toxicology Training Program grant T32 GM106999, UAMS Foundation/Medical Research Endowment Award AWD00053956, UAMS Year-End Chancellor’s Awards AWD00053484. The flow cytometry core facility was supported in part by the Center for Microbial Pathogenesis and Host Inflammatory Responses grant P20GM103625 through the COBRE NIGMS. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. ATA was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) 2214-A scholarship.
0.25% Trypsin-EDTA | Gibco by Life Sciences | 25200-056 | Cell culture |
4-well chamber slide | Thermo Scientific | 154526 | Cell seeding material for fluorescent imaging |
5 ml tubes with cell strainer cap | Falcon | 352235 | Single cell suspension tube for flow cytometry analysis |
6-well plate | Corning | 353046 | Cell seeding material for flow cytometry analysis |
15 ml conical tubes | MidSci | C15B | Cell culture |
75 cm2 ventilated cap tissue culture flasks | Corning | 4306414 | Cell culture |
Adenoviral cytosol specific roGFP | ViraQuest | VQAd roGFP | roGFP construct kindly provided by Dr. Schumaker |
Class II, Type A2 Safety Hood Cabinet | Thermo Scientific | 1300 Series A2 | Cell culture |
Countess automated cell counter | Invitrogen | C10227 | Cell counting |
Countess cell counter chamber slides | Invitrogen | C10283 | Cell counting |
DMEM | Gibco by Life Sciences | 11995-065 | Cell culture |
FBS | Atlanta Biologicals | S11150 | Cell culture |
Filtered pipette tips, sterile, 20 µl | Fisherbrand | 02-717-161 | Cell culture |
Filtered pipette tips, sterile, 1000 µl | Fisherbrand | 02-717-166 | Cell culture |
Flow Cytometer | BD Biosciences | LSRFortessa | Instrument equipped with FITC and BV510 bandpass filters for flow cytometry analyses |
Fluorescent Microscope | Advanced Microscopy Group (AMG) | Evos FL | Fluorescent imaging |
Hydrogen Peroxide 30% | Fisher Scientific | H325-100 | Positive control |
Light Cube, Custom | Life Sciences | CUB0037 | Fluorescent imaging of roGFP expressing cells (ex 405 nm) |
Light Cube, GFP | Thermo Scientific | AMEP4651 | Fluorescent imaging of roGFP expressing cells (ex 488 nm) |
MDA-MB-231 | American Tissue Culture Collection | HTB-26 | Human epithelial breast cancer cell line |
Microcentrifuge tubes, 2 ml | Grenier Bio-One | 623201 | Cell culture |
PBS | Gibco by Life Sciences | 10010-023 | Cell culture |
Pipet controller | Drummond | Hood Mate Model 360 | Cell culture |
Serologycal pipet, 1 ml | Fisherbrand | 13-678-11B | Cell culture |
Serologycal pipet, 5 ml | Fisherbrand | 13-678-11D | Cell culture |
Serologycal pipet, 10 ml | Fisherbrand | 13-678-11E | Cell culture |
Tissue Culture Incubator | Thermo Scientific | HERACell 150i | CO2 incubator for cell culture |
Trypan blue stain 0.4% | Invitrogen | T10282 | Cell counting |