Summary

嗜酸性粒植物视网膜免疫组织化学、西方分析和 Rna 分离的解剖

Published: March 15, 2019
doi:

Summary

本文介绍了一种解剖嗜酸性粒体木偶视网膜的手术方法, 以及免疫组织化学、西方分析和 rna 提取组织处理的方案。

Abstract

五食子性视网膜为研究发育过程中的形态发生过程提供了一个很好的模型系统。本文提出了一种可靠的方法来解剖娇嫩的酒糟体木偶视网膜。我们的手术方法利用现成的微解剖工具来打开小管, 精确地提取眼脑复合物。这些可以固定, 接受免疫组织化学, 视网膜, 然后安装在显微镜幻灯片和成像, 如果目标是检测细胞或亚细胞结构。或者, 不固定的视网膜可以从脑组织中分离出来, 在适当的缓冲液中裂解, 并用于蛋白质凝胶电泳或 mRNA 提取 (分别用于评估蛋白质或基因表达)。掌握所描述的微解剖协议可能需要大量的实践和耐心, 但一旦掌握了该协议, 就可以相对快速地隔离主要是未损坏的视网膜。

Introduction

嗜德维子由大约750个被细胞包围的孔体组成, 细胞排列在蜂窝晶格1234 中.每个瘤包含八个光感受器神经元, 四个透镜分泌锥细胞, 和两个主要色素细胞。周围的每个复合材料都是产生色素的晶格细胞和感觉刚毛群。由于其后有丝分裂的性质和陈规定型六角形排列,五合子木偶视网膜提供了一个很好的模型系统, 研究形态发生过程, 包括细胞粘5,6, 7,8,9,10和凋亡 11,12,13, 14,15.

几个已发表的协议利用气压从五食小狗 16,17,18提取眼脑复合物。这里描述的协议反而利用微解剖工具, 仔细和精确地分离眼睛-大脑复合物, 目的是获得未受损的视网膜组织。如果视网膜被用于形态、蛋白质或基因表达分析, 这一点至关重要, 因为视网膜的损伤会导致细胞压力或死亡, 从而改变细胞表型或基因表达。此外, 经过练习, 6 至10个眼脑复合物可以在10至15分钟内分离, 从而有助于实现在解剖眼组织的年龄和发育阶段最大限度地减少变异性的目标。

下面描述的固定、免疫染色和全安装协议适用于荧光显微镜用五全套眼睛的制备。视网膜可以与针对感兴趣的蛋白质的抗体一起孵育。例如, 抗体对粘附结成分可用于可视化细胞的顶部周长, 以便评估包括细胞类型、形状和排列在内的特征19。在固定之前, 眼睛可以从大脑中分离出来, 用于提取用于西方分析的蛋白质, 或用于 qRT-PCR 或 rna 测序的 RNA。

Protocol

1. 组织制备 建立五合子十字架 (如前面所述 20) 或培养特定的嗜酸性粒菌株, 以获得所需的基因型的脓包。为了确保大量的小鱼巧合地出现, 在营养丰富的食品培养基或标准的食品培养基上大量补充酵母糊, 建立这些苍蝇培养物一式两份。 在 25°c 保持果蝇培养。对于使用 UAS-GAL4系统的交叉, gmr-gal4是一个理想的驱动程序, 表达在幼?…

Representative Results

木偶眼是一种易于接触的组织, 可作为一个很好的模型来研究驱动形态发生的发育过程。在这里, 我们解剖视网膜, 并使用免疫荧光检测在细胞凋亡过程中激活的位粘连 (图 3a, c) 或 dcp-1 caspase (图 3A) (图3)25。这些方法使人们能够清楚地观察细胞在关键的形态发生过程中的作用, 包括原代细胞的吸收和形…

Discussion

这里描述的五食母目解剖方法允许在10至15分钟内分离6到10个眼睛-大脑复合物。然而, 为了掌握解剖技术, 提高解剖质量和速度, 耐心和实践是必不可少的。这种短暂的解剖时间确保了每只眼睛大约处于相同的发育阶段, 减少了数据集中视网膜表型或基因表达的变异性。虽然替代协议可能需要较少的实践掌握, 我们的协议旨在有条不紊地分离微妙的视网膜组织, 同时最大限度地减少撕裂或剪切?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢扎克鼓和我们的审查人员对手稿的有益评论。这项工作得到了 R15GM114729 的支持。

Materials

Adobe Photoshop Adobe Image processing software
Bamboo splints, 6"  Ted Pella Inc 116
Beta mercaptoethanol Sigma-Aldrich M3148
Beta-glycerol phosphate Sigma-Aldrich 50020
Black dissecting dish Glass petri dish filled to rim with SYLG170 or SYLG184 (colored black with finely ground charcoal powder). Leave at room temperature for 24-48 h to polymerize.
Blade holder Fine Science Tools 10053
Bovine serum albumin Sigma-Aldrich A7906
cOmplete, EDTA-free protease inhibitor cocktail tablets Roche 4693132001
Confocal microscope (Zeiss LSM 501) Carl Zeiss or similar microscope
Diethyl Pyrocarbonate (DEPC) Sigma-Aldrich 40718
Double-sided tape 3M 665
Drosophila food media, nutrient-rich  7.5% sucrose, 15% glucose, 2.5% agar, 20% brewers yeast, 5% peptone, 0.125% MgSO4.7H2O, 0.125% CaCl2.2H20
Drosophila food media, standard Bloomington Drosophila Stock center cornmeal recipe.  (https://bdsc.indiana.edu/information/recipes/bloomfood.html)
Ethylenediaminetetraacetic acid Sigma-Aldrich E6758
Fixative solution 4% formadehyde in PBS, pH 7.4.
Fluorescence microscope (TCS SP5 DM microscope) Leica Microsystems or similar microscope
Forceps  Fine Science Tools 91150-20 Forceps should be sharpened frequently.
Formaldehyde Thermo Scientific 28908
Glass 9-well dishes  Corning 7220-85 Also known as 9-well dishes 
Glass coverslips (22 x 22 mm) Fisher Scientific 12-542-B
Glass microscope slides (25 x 75 x 1 mm) Fisher Scientific 12-550-413
Glass petri dish Corning 3160-100BO
Glycerol Sigma-Aldrich G5516
Image Studio software version 5.2.5 LI-COR Biosciences Image processing software for quantitation of Western blots.
Laemmli sample buffer Bio-Rad 161-0737 2X concentrated protein sample buffer, supplement with beta mercaptoethanol as per manufacturer's instructions.
Lane marker reducing sample buffer  ThermoFisher Scientific 39000 5X concentrated protein sample buffer.
Microcentrigure tubes  Axygen MCT-175-C
Microdissection scissors  Fine Science Tools 15000-03
Microwell trays (72 x 10 µL wells) Nunc 438733
Mounting media 0.5% N-propylgallate and 80% glycerol in PBS
N-propylgallate Sigma-Aldrich P3130
Nuclease-free PBS (PBS in 0.1% DEPC, pH 7.4) Add appropriate volume of DEPC to PBS, mix well and incubate overnight at room temperature with constant stirring. Autoclave for at least 20 minutes. Store at 4°C
PBS (phosphate buffered saline pH 7.4) Sigma-Aldrich P5368 Prepare according to manufacturer's instructions
PBS+pi (PBS plus protease and phoshatase inhibitors) 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in PBS, pH 7.4.  
PBT 0.15% TritonX and 0.5% bovine serum albumin in PBS, pH 7.4
Pin holder Fine Science Tools 26016-12
Primary antibody: goat anti-GAPDH Imgenex IMG-3073 For Western blotting. Used at 1:3000
Primary antibody: rabbit anti-cleaved Dcp-1 Cell signaling 9578S For immunofluorescence. Used at 1:100
Primary antibody: rat anti-DEcad Developmental Studies Hybridoma Bank DCAD2 For immunofluorescence. Used at 1:20
Primary antibody: rat anti-DEcad DOI: 10.1006/dbio.1994.1287 DCAD1  Gift from Tadashi Uemura. Used at 1:100.
RNA extration kit: Relia Prep RNA tissue Miniprep kit  Promega Z6110
Rnase decontamination reagent (RNase Away) Molecular BioProducts 7002
Scalpel blades Fine Science Tools 10050 Break off small piece of scapel blade and secure in blade holder.
Secondary antibody: 488-conjugated  donkey anti-rat IgG (H+L) Jackson ImmunoResearch 712-545-153 For immunofluorescence. Used at 1:200
Secondary antibody: cy3-conjugated goat anti-rabbit IgG (H+L) Jackson ImmunoResearch 111-165-144 For immunofluorescence. Used at 1:100
Secondary antibody: HRP-conjugated goat anti-rat IgG (H+L) Cell Signaling Technology 7077 For Western blotting. Used at 1:3000
Secondary antibody: HRP-conjugated rabbit anti-goat IgG (H+L) Jackson ImmunoResearch 305-035-003 For Western blotting. Used at 1:3000
Sodium Chloride Sigma-Aldrich S3014
Sodium Fluoride Sigma-Aldrich 215309
Sodium vanadate Sigma-Aldrich 50860
Spectrophotometer (NanoDrop) ThermoFisher Scientific 2000c 
Stereo dissecting microscope (M60 or M80) Leica Microsystems or similar microscope
Sylgard (black) Dow Corning SYLG170
Sylgard (transparent) Dow Corning SYLG184 Color black with finely ground charcol powder
Tissue: Kimwipes KIMTECH 34120
TritonX Sigma-Aldrich T8787
Trizma hydrochloride pH7.5 Sigma-Aldrich T5941
Tungsten needle, fine Fine Science Tools 10130-10 Insert into pin holder
Tungsten needle, sturdy Fine Science Tools 10130-20 Insert into pin holder
WTLB (western tissue lysis buffer) 150mM NaCl, 1.5% Triton X-100, 1mM EDTA, 20% glycerol, 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in 50mM Tris-HCl (pH 7.5). Supplement with one cOmplete protease cocktail table per 10 mL solution.
Yeast paste (local supermarket) Approximately 2 tablespoons Fleischmann's ActiveDry Yeast (or similar) dissolved in ~20 mL distilled H2O

References

  1. Cagan, R. L., Ready, D. F. The emergence of order in the Drosophila pupal retina. Developmental biology. 136 (2), 346-362 (1989).
  2. Wolff, T., Ready, D. . The development of Drosophila melanogaster. , 1277-1325 (1993).
  3. Carthew, R. W. Pattern formation in the Drosophila eye. Current opinion in genetics & development. 17 (4), 309-313 (2007).
  4. Kumar, J. P. Building an ommatidium one cell at a time. Developmental Dynamics. 241 (1), 136-149 (2012).
  5. Hayashi, T., Carthew, R. W. Surface mechanics mediate pattern formation in the developing retina. Nature. 431, 647 (2004).
  6. Bao, S., Cagan, R. Preferential Adhesion Mediated by Hibris and Roughest Regulates Morphogenesis and Patterning in the Drosophila Eye. Developmental Cell. 8 (6), 925-935 (2016).
  7. Cordero, J. B., Larson, D. E., Craig, C. R., Hays, R., Cagan, R. Dynamic Decapentaplegic signaling regulates patterning and adhesion in the Drosophila pupal retina. Development (Cambridge, England). 134 (10), 1861-1871 (2007).
  8. Larson, D. E., Liberman, Z., Cagan, R. L. Cellular behavior in the developing Drosophila pupal retina. Mechanisms of development. 125 (3-4), 223-232 (2008).
  9. Martín-Bermudo, M. D., Bardet, P. L., Bellaïche, Y., Malartre, M. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development. Development. 142 (8), 1492-1501 (2015).
  10. Chan, E. H., Chavadimane Shivakumar, P., Clément, R., Laugier, E., Lenne, P. F. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife. 6, e22796 (2017).
  11. Lin, H. V., Rogulja, A., Cadigan, K. M. Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis. Development. 131 (10), 2409-2418 (2004).
  12. Cordero, J., Jassim, O., Bao, S., Cagan, R. A role for wingless in an early pupal cell death event that contributes to patterning the Drosophila eye. Mechanisms of development. 121 (12), 1523-1530 (2004).
  13. Mendes, C. S., et al. Cytochrome c‐d regulates developmental apoptosis in the Drosophila retina. EMBO reports. 7 (9), 933-939 (2006).
  14. Monserrate, J., Brachmann, C. B. Identification of the death zone: a spatially restricted region for programmed cell death that sculpts the fly eye. Cell Death & Differentiation. 14 (2), 209-217 (2007).
  15. Bushnell, H. L., et al. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. 发育生物学. 433 (1), 94-107 (2018).
  16. Wolff, T. Dissection techniques for pupal and larval Drosophila eyes. CSH Protoc. 2007, (2007).
  17. Hsiao, H. Y., et al. Dissection and Immunohistochemistry of Larval, Pupal and Adult Drosophila Retinas. Journal of visualized experiments : JoVE. (69), e4347 (2012).
  18. Tea, J. S., Cespedes, A., Dawson, D., Banerjee, U., Call, G. B. Dissection and Mounting of Drosophila Pupal Eye Discs. Journal of Visualized Experiments : JoVE. (93), e52315 (2014).
  19. Johnson, R. I., Cagan, R. L. A Quantitative Method to Analyze Drosophila Pupal Eye Patterning. PLoS ONE. 4 (9), e7008 (2009).
  20. Greenspan, R. J. . Fly pushing : the theory and practice of Drosophila genetics. , (2004).
  21. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  22. Ellis, M. C., O’Neill, E. M., Rubin, G. M. Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development. 119 (3), 855-865 (1993).
  23. Duffy, B. J. GAL4 system in drosophila: A fly geneticist’s swiss army knife. genesis. 34 (1-2), 1-15 (2002).
  24. Li, W. Z., Li, S. L., Zheng, H. Y., Zhang, S. P., Xue, L. A broad expression profile of the GMR-GAL4 driver in Drosophila melanogaster. Genet Mol Res. 11 (3), 1997-2002 (2012).
  25. Song, Z., McCall, K., Steller, H. DCP-1, a Drosophila Cell Death Protease Essential for Development. Science. 275 (5299), 536-540 (1997).
  26. Hay, B. A., Wassarman, D. A., Rubin, G. M. Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell. 83 (7), 1253-1262 (1995).

Play Video

Cite This Article
DeAngelis, M. W., Johnson, R. I. Dissection of the Drosophila Pupal Retina for Immunohistochemistry, Western Analysis, and RNA Isolation. J. Vis. Exp. (145), e59299, doi:10.3791/59299 (2019).

View Video