This paper presents a surgical method for dissecting Drosophila pupal retinas along with protocols for the processing of tissue for immunohistochemistry, western analysis, and RNA-extraction.
The Drosophila pupal retina provides an excellent model system for the study of morphogenetic processes during development. In this paper, we present a reliable protocol for the dissection of the delicate Drosophila pupal retina. Our surgical approach utilizes readily-available microdissection tools to open pupae and precisely extract eye-brain complexes. These can be fixed, subjected to immunohistochemistry, and retinas then mounted onto microscope slides and imaged if the goal is to detect cellular or subcellular structures. Alternatively, unfixed retinas can be isolated from brain tissue, lysed in appropriate buffers and utilized for protein gel electrophoresis or mRNA extraction (to assess protein or gene expression, respectively). Significant practice and patience may be required to master the microdissection protocol described, but once mastered, the protocol enables relatively quick isolation of mainly undamaged retinas.
The Drosophila retina is composed of approximately 750 ommatidia surrounded by pigment cells arranged in a honeycomb lattice1,2,3,4. Each ommatidium contains eight photoreceptor neurons, four lens-secreting cone cells, and two primary pigment cells. Surrounding each ommatidium are pigment-producing lattice cells and sensory bristle groups. Due to its post-mitotic nature and stereotypical hexagonal arrangement, the Drosophila pupal retina provides an excellent model system for the study of morphogenetic processes including cell adhesion5,6,7,8,9,10 and apoptosis11,12,13,14,15.
Several published protocols utilize air pressure to extract eye-brain complexes from Drosophila pupae16,17,18. The protocol described here instead utilizes microdissection tools to carefully and precisely isolate eye-brain complexes with the goal of obtaining undamaged retinal tissue. This is crucial if retinas are to be utilized for morphological, protein, or gene expression analyses since damage to retinas can result in cellular stress or death, which could modify the cellular phenotype or gene expression. Additionally, after practice, 6 to 10 eye-brain complexes can be isolated in 10 to 15 min, facilitating the goal of minimizing variability in the age and developmental stage of dissected eye tissue.
The fixation, immunostaining, and whole-mount protocol described below is suitable for the preparation of Drosophila eyes for fluorescent microscopy. Retinas can be incubated with antibodies targeting proteins of interest. For example, antibodies to adherens junction components can be utilized to visualize the apical circumferences of cells so that characteristics including cell type, shape and arrangement can be assessed19. Prior to fixation, eyes can instead be cleaved from the brain for the purpose of extracting protein for Western analysis, or RNA for use in qRT-PCR or RNA-sequencing.
1. Tissue Preparation
2. Dissection of Eye-brain Complexes
3. Processing of Tissue for Immunofluorescence
4. Preparation of Eye Tissue for Western Blotting:
5. Preparation of Eye Tissue for RNA Extraction:
The pupal eye is an easily-accessible tissue that serves as an excellent model to investigate developmental processes that drive morphogenesis. Here, we have dissected retinas and used immunofluorescence to detect the apical adherens junctions (Figure 3A, C) or the Dcp-1 caspase (Figure 3D) that is activated during apoptosis (Figure 3)25. These approaches allow one to clearly observe cells during key morphogenetic processes including the recruitment and morphogenesis of primary cells (from 18 h APF), the intercalation of lattice cells around each ommatidium (18-24 h APF), the establishment of the tertiary niche (21-24 h APF), changes in cell size and shape (from 18 h to 40 h APF), and apoptosis (from 18 to ~33 h APF). The timing of these morphogenetic events is temperature-dependent and will therefore vary modestly in response to minor differences in incubator temperatures in different laboratory settings. However, by around 40 h APF, the final arrangement of cells is usually achieved (Figure 3B, C) and this is an ideal age at which to assess the consequences of genetic mutation or modified gene expression. For example, following ectopic expression of Diap1, a core inhibitor of apoptosis caspase activation (Figure 3C)26, our approach allows one to quantify the consequent increase in the number of lattice cells when compared to a control GMR>lacZ retina. One can also easily assess apoptosis more directly by utilizing the anti-Dcp-1 antibody or other approaches to detect dying cells (Figure 3D).
Eye lysate can be interrogated using Western analysis to determine the presence and/or relative expression of proteins of interest. Here, we show the detection of DE-cadherin, the core component of adherens junctions, in wild type Canton S retinas dissected at 21 and 40 h APF eyes (Figure 4A). Quantification of this sample Western blot (right, Figure 4A) revealed that the relative expression of DE-Cadherin, did not differ substantially at these two time-points, when band intensity is normalized according to expression of GAPDH (a core metabolic enzyme). Such analyses would usually be performed in triplicate rather than just once, as shown here.
It is essential to isolate high-purity mRNA from Drosophila pupal retinas if one’s aim is to analyze gene expression using advanced sequencing applications (e.g., Next-Gen, RNA-seq). We have found that dissecting more than 60 eyes per genotype or experimental condition is optimal if one’s goal is to isolate >1 mg of high-quality RNA (Figure 4B). Here, we show an example of an absorbance spectra of an RNA sample isolated from 57 wild type Canton S eyes, dissected at 40 h APF (Figure 4B, top panel). The peak absorbance at 260 nm corresponds to the absorbance wavelength of RNA. We also present a table reflecting the RNA yield and A260/A280 and A260/A230 purity ratios of six RNA samples, gathered at either 21 h or 40 h APF. These data reflect subtle differences in RNA yield when extracting RNA.
Figure 1: Selection and culture of pupae for dissection. (A) Wandering third larval instar (L3) larvae and pupae locate along the sides of healthy Drosophila cultures. (B) Pre-pupae can be identified by their translucent white color as pigment has yet to be generated in the protective pupal case. Anterior-posterior and dorsal-ventral axis of the pupa are shown in blue. A damp bamboo splint is used to dislodge and pick pre-pupae from the vial walls. (C) Pupae are placed inside 1.5 mL microcentrifuge tubes that are labelled appropriately (genotype, date of collection, and time of collection) and (D) cultured inside a humidified chamber assembled from an empty pipette-tip box. Humidity is maintained by placing a piece of damp tissue inside the box. Please click here to view a larger version of this figure.
Figure 2: Dissecting the pupal eye. (A) Pupae are adhered to double-sided tape on a black dissecting dish. Anterior, posterior, and dorsal coordinates are indicated in blue. (B) To isolate eye-brain complexes (a single one is shown here), (C) the pupa is first removed from its pupal case. Important steps in this process are shown. Red lines indicate where to tear and open the pupal case after the operculum is removed. The pupae are then removed from the torn pupal case with forceps. (D) An exposed pupa is first cut along the thorax with microdissection scissors (position indicated with dashed red line) and the head epithelium then carefully torn open (red arrows), as shown in (E) to reveal the opaque eye-brain complex. (F) Following incubation with appropriate antibodies, retinas are sliced from eye-brain complexes. Important steps in this process are shown. The eye-brain is stabilized with a sturdy tungsten needle (left) and the retinas removed with a fine tungsten needle (right). For protein and RNA analyses, unfixed retinas can be cleanly cut from optic lobes using a fine razor blade or microdissection scissors, rather than a fine tungsten needle. Please click here to view a larger version of this figure.
Figure 3: Immunofluorescence of the pupal eye. (A) Antibodies to DE-cadherin label apical adherens junctions of cells of the pupal eye. All images in panel A were gathered in the central region of a retina using confocal microscopy, minimally modified with an image processing software, and are presented at the same scale (scale bar = 5 µm). Note growth and rearrangement of cells from 18 h APF to 27 h APF. (B) Cartoon of the apical view of a single fully-patterned ommatidium at 40 h APF (left) and an ommatidium in cross-section. Cell types are color-coded as listed in the key. The photoreceptors are buried below the surface of the pseudostratified neuroepithlium and surrounded by cone and pigment cells. Three bristle groups surround each ommatidium. (C) Small regions of a control retina in which lacZ was expressed (left) or Diap1 (right) to inhibit apoptosis of secondary and tertiary pigment cells. Labeling of adherens junctions with anti-DE-cadherin enables the analysis of cell number, arrangement, and shape. Images were captured using standard fluorescent microscopy. (D) An entire retina incubated with antibodies to activated Dcp-1, a caspase activated during apoptosis, which prunes numerous cells from the eye. Image was captured using confocal microscopy. White dotted line outlines the eye. Please click here to view a larger version of this figure.
Figure 4: Protein and gene expression analyses of the pupal eye. (A) Western blot (left) of 28 eyes dissected at 21 h APF or 40 h APF, probed with antibodies to DE-cad and, as a loading control, GAPDH. Analyses of protein band intensities (right) reveals comparable concentrations of DE-cad present in these groups of retinas, relative to GAPDH. (B) Single absorbance spectrum of an RNA sample extracted from Canton S retinas dissected at 40 h APF (top). Note absorbance peak at 260 nm. Table documenting the amount and purity ratios of RNA extracted from Canton S pupal retinas isolated at 21 and 40 h APF (bottom). These data arise from three independent sample sets. Pupae for each sample set were raised and incubated in the same conditions and dissected on the same day. Please click here to view a larger version of this figure.
The method of Drosophila pupal eye dissection described here allows for the isolation of 6 to 10 eye-brain complexes within 10 to 15 min. However, patience and practice are essential in order to master the dissection technique and improve the quality and speed of dissections. This short dissection time ensures that each eye is approximately the same developmental stage, reducing variability in the phenotype or gene expression of retinas in a data set. Whilst alternative protocols may require less practice to master, our protocol is designed to methodically isolate delicate retinal tissue while minimizing the risk of tearing or shearing, because damage to the eye could induce stress pathway activation or even cell death. We advise beginners to first master the dissection of pupae cultured to 40 h APF before attempting to dissect younger eyes. We recommend setting up replicate crosses for all experiments (step 1.1) which will ensure that there are always sufficient pupae available for collection (step 1.3). Retinas can be dissected at a variety of timepoints during pupal development, depending on the distinct morphogenetic events of interest to the researcher. These may include the recruitment and morphogenesis of primary cells (from 18 h APF), intercalation of lattice cells (18-24 h APF), establishment of the tertiary niche (21-24 h APF), changes in cell size and shape (from 18 h to 40 h APF) and apoptosis (from 18 to ~33 h APF) (Figure 3A).
If during initial opening of the pupal case (step 2.2, Figure 2C), the thorax of a pupa is punctured, the researcher should still be able to proceed with the dissection. However, if the head is initially punctured, extracting undamaged eye-brain complexes may be difficult. When removing a pupa from its pupal case (step 2.3, Figure 2C, right panel), the abdominal pupal case can sometimes dislodge from the double-sided tape and remain wrapped about the pupa’s abdomen. This is unlikely a hindrance, although the pupa may float when surrounded by PBS until the abdomen and attached pupal case are severed from the pupa (step 2.6). To preserve the integrity of the retinal tissue, it is imperative that it is fixed or frozen as quickly as possible after the initial puncture of the pupae. In addition, using ice-cold solutions and maintaining the tissue on ice (or at 4 °C) wherever possible throughout the protocol will preserve the tissue and cellular integrity, leading to better immunofluorescence, protein-analysis or RNA-analysis. For the latter applications, it is important to remove all brain and fat tissue from eyes as these tissues will contaminate analyses (step 2.9 and 4.3 or 5.4).
The pupal eye-brain complex can adhere to unlubricated pipette tips, glass and dissection tools when unfixed or during PBS washes/rinses, leading to tissue damage. To prevent this, we recommend meticulous lubrication of pipette tips and not washing 9-well glass dishes with ethanol (dish soap should also be avoided). Instead, simply clean glass dishes with distilled H2O and lubricate, if needed, with a PBT rinse prior to use. Dissection forceps, scissors and needles should also be mainly cleaned with distilled H2O, except when preparing these for RNA-extraction dissections (step 5.1). However, light adhesion between retinas and glass microscope slides can assist in unfurling eyes and positioning them on slides when separating eyes from optic lobes during mounting (step 3.5.4 and 3.5.5). Similarly, light adhesion of eyes to black dissecting dishes can be used to flatten and very lightly stretch the tissue which facilitates clean severing of eye-optic lobe connections when isolating retinas for protein or RNA analyses (step 4.5 and 5.6). We have found that microdissection scissors or a fine razor blade are excellent tools to quickly and cleanly cleave unfixed eyes from optic lobes.
During primary antibody staining, rather than incubating eye-brain complexes in 72-well micro-well trays (step 3.3.5), a 9-well glass dish can instead be used. To prevent evaporation of the antibody solution overnight, be sure to cap the glass dish wells with a cover slip or slide. However, this approach will require 40-50 µL of primary antibody solution for a batch of 6-10 eye-brain complexes incubated in one well of 9-well glass dish, rather than 20 µL of primary antibody solution distributed between 2 wells of a 72-well micro-well tray.
Secondary fixation of eye-brain complexes (step 3.4) prior to mounting eyes on microscope slides (step 3.5) will marginally stiffen the tissue so that it is easier to cleave the eyes from optic lobes and the eyes are less likely to fold or adhere to dissection needles. After a 1-2 h incubation in mounting medium (step 3.5.1), the eye-brain complexes become slightly opaque and hence easier to see whilst mounting. In addition, after 1-2 h in mounting medium, most secondary antibodies will be suitably protected from photo-bleaching during fluorescent imaging. Incubating retinas overnight in mounting media before mounting is not recommended as this renders retinas soft, negating the stiffening effect of secondary fixation.
For Western analyses, the lysate of at least 20 eyes is required to reliably detect proteins using antibodies that robustly recognize Drosophila proteins (e.g., Figure 4A). However, a larger number of eyes may be required if there is low expression of the target protein of interest. If lysis of the tissue for subsequent Western blotting is incomplete (step 4.7), the volume of WTLB added to the sample can be marginally increased and the volume of concentrated sample buffer adjusted accordingly (step 4.9). For RNA extraction, rapid dissection of a significant number of eyes may be required if the goal is to isolate a large amount of high-quality RNA (step 5.2, see Figure 4B). This potential drawback can be overcome if two scientists who have mastered Drosophila pupal-eye dissection collaborate to dissect these large numbers of fly retinas simultaneously. However, the total amount of RNA required will depend on the requirements of the institution or facility performing RNA analysis, the type of RNA analysis or sequencing, and the RNA extraction kit that is used.
The authors have nothing to disclose.
We thank Zack Drum and our Reviewers for helpful comments on the manuscript. This work was supported by R15GM114729.
Adobe Photoshop | Adobe | Image processing software | |
Bamboo splints, 6" | Ted Pella Inc | 116 | |
Beta mercaptoethanol | Sigma-Aldrich | M3148 | |
Beta-glycerol phosphate | Sigma-Aldrich | 50020 | |
Black dissecting dish | Glass petri dish filled to rim with SYLG170 or SYLG184 (colored black with finely ground charcoal powder). Leave at room temperature for 24-48 h to polymerize. | ||
Blade holder | Fine Science Tools | 10053 | |
Bovine serum albumin | Sigma-Aldrich | A7906 | |
cOmplete, EDTA-free protease inhibitor cocktail tablets | Roche | 4693132001 | |
Confocal microscope (Zeiss LSM 501) | Carl Zeiss | or similar microscope | |
Diethyl Pyrocarbonate (DEPC) | Sigma-Aldrich | 40718 | |
Double-sided tape | 3M | 665 | |
Drosophila food media, nutrient-rich | 7.5% sucrose, 15% glucose, 2.5% agar, 20% brewers yeast, 5% peptone, 0.125% MgSO4.7H2O, 0.125% CaCl2.2H20 | ||
Drosophila food media, standard | Bloomington Drosophila Stock center cornmeal recipe. (https://bdsc.indiana.edu/information/recipes/bloomfood.html) | ||
Ethylenediaminetetraacetic acid | Sigma-Aldrich | E6758 | |
Fixative solution | 4% formadehyde in PBS, pH 7.4. | ||
Fluorescence microscope (TCS SP5 DM microscope) | Leica Microsystems | or similar microscope | |
Forceps | Fine Science Tools | 91150-20 | Forceps should be sharpened frequently. |
Formaldehyde | Thermo Scientific | 28908 | |
Glass 9-well dishes | Corning | 7220-85 | Also known as 9-well dishes |
Glass coverslips (22 x 22 mm) | Fisher Scientific | 12-542-B | |
Glass microscope slides (25 x 75 x 1 mm) | Fisher Scientific | 12-550-413 | |
Glass petri dish | Corning | 3160-100BO | |
Glycerol | Sigma-Aldrich | G5516 | |
Image Studio software version 5.2.5 | LI-COR Biosciences | Image processing software for quantitation of Western blots. | |
Laemmli sample buffer | Bio-Rad | 161-0737 | 2X concentrated protein sample buffer, supplement with beta mercaptoethanol as per manufacturer's instructions. |
Lane marker reducing sample buffer | ThermoFisher Scientific | 39000 | 5X concentrated protein sample buffer. |
Microcentrigure tubes | Axygen | MCT-175-C | |
Microdissection scissors | Fine Science Tools | 15000-03 | |
Microwell trays (72 x 10 µL wells) | Nunc | 438733 | |
Mounting media | 0.5% N-propylgallate and 80% glycerol in PBS | ||
N-propylgallate | Sigma-Aldrich | P3130 | |
Nuclease-free PBS (PBS in 0.1% DEPC, pH 7.4) | Add appropriate volume of DEPC to PBS, mix well and incubate overnight at room temperature with constant stirring. Autoclave for at least 20 minutes. Store at 4°C | ||
PBS (phosphate buffered saline pH 7.4) | Sigma-Aldrich | P5368 | Prepare according to manufacturer's instructions |
PBS+pi (PBS plus protease and phoshatase inhibitors) | 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in PBS, pH 7.4. | ||
PBT | 0.15% TritonX and 0.5% bovine serum albumin in PBS, pH 7.4 | ||
Pin holder | Fine Science Tools | 26016-12 | |
Primary antibody: goat anti-GAPDH | Imgenex | IMG-3073 | For Western blotting. Used at 1:3000 |
Primary antibody: rabbit anti-cleaved Dcp-1 | Cell signaling | 9578S | For immunofluorescence. Used at 1:100 |
Primary antibody: rat anti-DEcad | Developmental Studies Hybridoma Bank | DCAD2 | For immunofluorescence. Used at 1:20 |
Primary antibody: rat anti-DEcad | DOI: 10.1006/dbio.1994.1287 | DCAD1 | Gift from Tadashi Uemura. Used at 1:100. |
RNA extration kit: Relia Prep RNA tissue Miniprep kit | Promega | Z6110 | |
Rnase decontamination reagent (RNase Away) | Molecular BioProducts | 7002 | |
Scalpel blades | Fine Science Tools | 10050 | Break off small piece of scapel blade and secure in blade holder. |
Secondary antibody: 488-conjugated donkey anti-rat IgG (H+L) | Jackson ImmunoResearch | 712-545-153 | For immunofluorescence. Used at 1:200 |
Secondary antibody: cy3-conjugated goat anti-rabbit IgG (H+L) | Jackson ImmunoResearch | 111-165-144 | For immunofluorescence. Used at 1:100 |
Secondary antibody: HRP-conjugated goat anti-rat IgG (H+L) | Cell Signaling Technology | 7077 | For Western blotting. Used at 1:3000 |
Secondary antibody: HRP-conjugated rabbit anti-goat IgG (H+L) | Jackson ImmunoResearch | 305-035-003 | For Western blotting. Used at 1:3000 |
Sodium Chloride | Sigma-Aldrich | S3014 | |
Sodium Fluoride | Sigma-Aldrich | 215309 | |
Sodium vanadate | Sigma-Aldrich | 50860 | |
Spectrophotometer (NanoDrop) | ThermoFisher Scientific | 2000c | |
Stereo dissecting microscope (M60 or M80) | Leica Microsystems | or similar microscope | |
Sylgard (black) | Dow Corning | SYLG170 | |
Sylgard (transparent) | Dow Corning | SYLG184 | Color black with finely ground charcol powder |
Tissue: Kimwipes | KIMTECH | 34120 | |
TritonX | Sigma-Aldrich | T8787 | |
Trizma hydrochloride pH7.5 | Sigma-Aldrich | T5941 | |
Tungsten needle, fine | Fine Science Tools | 10130-10 | Insert into pin holder |
Tungsten needle, sturdy | Fine Science Tools | 10130-20 | Insert into pin holder |
WTLB (western tissue lysis buffer) | 150mM NaCl, 1.5% Triton X-100, 1mM EDTA, 20% glycerol, 10mM NaF, 1mM beta-glycerol phosphate and 1mM Na3VO4 in 50mM Tris-HCl (pH 7.5). Supplement with one cOmplete protease cocktail table per 10 mL solution. | ||
Yeast paste | (local supermarket) | Approximately 2 tablespoons Fleischmann's ActiveDry Yeast (or similar) dissolved in ~20 mL distilled H2O |