Here, we present a protocol to describe extracellular vesicles (EVs) isolation in in vitro cultured medium from adult Schistosoma japonicum.
Extracellular vesicles (EVs) are membranous vesicles released by a variety of cells into the extracellular microenvironment. EVs represent a population of heterogeneous vesicles, whose size range between 40 and 1,000 nm. Accumulated evidence indicated that EVs play important regulatory roles in pathogen-host interactions. A deep understanding of schistosome EVs should provide insights into the mechanisms underlying schistosome-host interactions, enabling development of novel strategies against schistosomiasis. Here, we aim to further study EVs functions in schistosomes by presenting a protocol for the isolation and characterization of EVs from adult Schistosoma japonicum (S. japonicum). EVs were isolated from in vitro culture medium using centrifugation combined with a commercial exosome isolation kit. The isolated S. japonicum EVs (SjEVs) typically possess a diameter of 100 – 400 nm, and are characterized by transmission electronic microscopy and western blotting. The usage of PKH67 dye-labeled SjEVs has demonstrated that SjEVs are internalized by the recipient cells. Overall, our protocol provides an alternative method for isolating EVs from adult schistosomes; the isolated SjEVs may be suitable for functional analysis.
Extracellular vesicles (EVs) are a population of small membrane-bound vesicles encapsulated with various proteins, lipids, and nucleic acids. Recent studies demonstrated that EVs play a crucial role in cell-cell communication, and are involved in the regulation of numerous physiological processes, including cell development, immune regulation, angiogenesis, and cell migration2,3,4,5. Accumulating evidence indicates that EVs, circulating exosomes, and their miRNA cargo represents potential biomarkers of certain diseases6.
Several protozoa such as Trichomonas vaginalis, Trypanosoma cruzi, and Leishmania spp., have been shown to be able to secrete EVs; helminths have additionally been found to secrete EVs into living hosts7. Parasitic EVs have been shown to be involved in the maintenance of infection, pathogenicity8, and immune regulation9. Recent studies in schistosomes both Schistosoma mansoni (S. mansoni) 10,11 and S. japonicum12 have indicated that adult schistosomes secrete exosome-like vesicles that may be involved in the functional regulations of specific biological processes.
To date, several methods have been used to isolate extracellular vesicles, such as ultracentrifugation,ultrafiltration13, the use of polymer-based reagents, size-exclusion chromatography, and immunoaffinity isolation. These different methods possess their own advantages and limitations14. Generally, ultracentrifugation is considered the gold standard method for vesicle isolation. However, this method suffers from the limitation of potential EV aggregation14.
In schistosomes, a couple of methods have been reported for EV isolation: these include ultracentrifugation11,12,10 and the use of commercial EV isolation kit16 for several stages (eggs16, schistosomula11, adult schistosomes10,12,17). Given that microvesicles are of a wide range of size from several hundred nanometers to thousand nanometers, we developed an alternative method that combines with the use of bench centrifuge, ultrafiltration, and a commercial EV isolation kit to isolate the EVs from adult Schistosoma japonicum. The isolated EVs typically possessed a diameter of 100 – 400 nm and were successfully internalized by the recipient cells.
All animal experiments were approved by the local ethics committee of Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (Permit Number: SHVRIAU-14-0101).
1. In Vitro Culture of Schistosomes
Note: Schistosomes represent a biohazard. Workers should wear latex gloves at all times when handling worms, schistosomal suspensions, or other related biological materials. New Zealand rabbits were infected with ~2,000 cercariae via abdominal exposure. Schistosomes at the liver stage were collected from rabbits infected with S. japonicum cercariae at 28 days post-infection by perfusion of liver and mesenteric veins. The procedures of worm collection have been referenced in previous publications reporting studies in mice18.
2. Pre-treated Condition Media
3. Isolation of SjEVs
4. Characterization of EVs by Western Blotting
5. Characterization of EVs by Transmission Electron Microscopy
6. SjEVs Label with PKH67 and Cell Uptake Assay
Notes: All subsequent steps were performed at ambient temperature (20 – 25 °C), unless otherwise indicated.
7. SjEVs Cell Uptake Assay
To quantify the yield of isolated SjEVs using the described protocol, we used BCA protein assay to access the protein concentration of the isolated SjEVs from 28-day adult schistosomes. As shown in Table 1, the SjEV protein concentration ranged from 208 µg to 250 µg per 100 mL of medium (Table 1).The particle size, as determined by Malvern nanoparticle analysis, indicated that the isolated SjEVs ranged from 100 nm to 400 nm, with the highest population around 220 nm in size (Figure 1). Further characterization of the SjEVs by transmission electron microscopy revealed EVs to be round vesicles of approximately 100 – 200 nm in diameter (Figure 2). Western blotting analysis indicated that the isolated SjEVs were recognized using CD63 antibodies, which is a typical EV marker (Figure 3). Fluorescence microscopy observation indicated that the PKH67-labeled SjEVs were internalized by the NCTC clone 1,469 cells and that the SjEVs were mainly distributed in the cytoplasm of recipient cells (Figure 4).
Samples | EVs/100ml culture medium |
#1 | 250 µg |
#2 | 208 µg |
#3 | 220 µg |
Table 1: SjEVs protein obtained from culture medium; the amount of SjEVs accessed by BCA assay per 100 mL of culture medium, containing ~500 worm pairs, is shown.
Figure 1: Size distribution of SjEVs Isolated from cultured medium. 20 µL of SjEVs solution was diluted with 1000 µL PBS; then, the mixture was analyzed using a high performance two angle particle and molecular size analyzer. The result shown is representative of the data from three independent isolations. Please click here to view a larger version of this figure.
Figure 2: Characterization of SjEVs by transmission electron microscopy. Please click here to view a larger version of this figure.
Figure 3: Western blotting analysis of the isolated SjEVs against CD63 antibodies. Please click here to view a larger version of this figure.
Figure 4: Uptake of SjEVs by mammalian cells. The PKH labeled SjEVs are shown in green, while the cell nuclei are shown in blue. Please click here to view a larger version of this figure.
Recent studies on EVs have demonstrated that schistosome EVs play an important role in host-pathogen interactions3,9,12,16. To further address their regulatory functions, it is essential to isolate EVs from schistosomes. Here, we describe an alternative method for SjEV isolation. This method yields a wide range size of SjEVs, from 100 nm to 400 nm, in adult S. japonicum. The following cell uptake assay indicated that EVs isolated under the described protocol were successfully internalized by the recipient cells and that their associated miRNAs potentially play regulatory roles17.
EVs, which may be secreted by many different types of cells, are also present in various kinds of body fluids19. Consequently, it is important to avoid to artificially introducing exogenous EVs during the process of SjEV isolation. For example, the culture medium should not contain serum. The worm density in the in vitro culture should be reasonable to minimize the potential stress response and lower the mortality rates of worms. In addition, it should be noted that different stages of schistosomes or worms from different hosts may present different EVs. Consequently, it is imperative to maintain the parasites in in vitro environments that closely resemble the host environment, and the conditions under which SjEV isolation is performed must be consistent. Additionally, we are unable to rule out the possibility of variance related to SjEVs caused by culture stress.
Here, we present a protocol for the isolation of SjEVs from 2 h in vitro culture media for adult schistosomes. An advantage of this protocol is that short culture time minimizes the stress to which parasites are exposed, which may result in non-physiological EV secretion. In addition, we found that the SjEVs isolated as described in this protocol were internalized by the recipient cells, suggesting that these SjEVs may be biologically active17. Overall, the present protocol allows the efficient isolation of SjEVs from adult worms using standard laboratory equipment, and enables their characterization using western blotting and cell uptake assay. The isolated EVs may be used to further characterize host-pathogen interactions.
The authors have nothing to disclose.
This study was, in part or in whole, supported by National Natural Science Foundation of China (31472187 and 31672550) and The Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.
Material | |||
Total Exosome Isolation Reagent (from cell culture media) | ThermoFisher SCIENTIFIC | 4478359 | For isolating S. japonicum extracellular vesicles |
PKH67 | Sigma-aldrich | MINI67 | For labeling Evs |
RPMI 1640 Medium | ThermoFisher SCIENTIFIC | 11875119 | For parasite culture |
Penicillin-Streptomycin | ThermoFisher SCIENTIFIC | 15140122 | |
0.22μm syringe filter | Merck | SLGP033RB | |
SnakeSkin Dialysis Tubing | Thermo SCIENTIFIC | 68035 | |
PEG8000 | Sangon Biotech | A100159 | |
RIPA | Beyotime | P0013B | |
EMD Millipore™ Immobilon™ Western Chemiluminescent HRP Substrate (ECL) | Fisher scientific | WBKLS0100 | |
DAPI | Cell Signaling Technology | 4083 | |
BCA kit | Beyotime | P0010 | |
CD63 antibodies | Sangon Biotech | D160973-0025 | |
PVDF | Bio-Rad | 1704273 | |
Formvar/Carbon 400 mesh | Ted Pella | 01754-F | |
Phosphotungstic Acid | Ted Pella | 19402 | |
anti-mouse IgG-HRP | CWBIO | CW0102 | |
NCTC clone 1469 cells | ATCC | ATCC® CCL-9.1™ | |
FBS | HyClone | SV30087.02 | |
Equipments | |||
GE chemoluminescance imaging system | GE | ImageQuant LAS4000mini | |
Transmission electron microscopy | Hitachi | H-7600 | |
Milli-Q water | Milli-Q | Milli-Q Elix | |
Eppendor Centrifuge | Eppendorf | Centrifuge 5804R | |
Zetasizer Nano | Malvern | Zetasizer Nano ZS | |
Ultracentrifuge | Beckman | Optima L-100 XP Ultracentrifuge | |
Incubator | ESCO | CCL-107B | |
Microscope | Zeiss | Zeiss Axin Observer Z1 |