Here, we present a protocol to simultaneously study the flammability and burning efficiency of fresh and weathered crude oil under conditions that simulate in situ burning operations on the sea.
A new method for the simultaneous study of the flammability and burning efficiency of fresh and weathered crude oil through two experimental laboratory setups is presented. The experiments are easily repeatable compared to operational scale experiments (pool diameter ≥2 m), while still featuring quite realistic in situ burning conditions of crude oil on water. Experimental conditions include a flowing water sub-layer that cools the oil slick and an external heat flux (up to 50 kW/m2) that simulates the higher heat feedback to the fuel surface in operational scale crude oil pool fires. These conditions enable a controlled laboratory study of the burning efficiency of crude oil pool fires that are equivalent to operational scale experiments. The method also provides quantitative data on the requirements for igniting crude oils in terms of the critical heat flux, ignition delay time as a function of the incident heat flux, the surface temperature upon ignition, and the thermal inertia. This type of data can be used to determine the required strength and duration of an ignition source to ignite a certain type of fresh or weathered crude oil. The main limitation of the method is that the cooling effect of the flowing water sub-layer on the burning crude oil as a function of the external heat flux has not been fully quantified. Experimental results clearly showed that the flowing water sub-layer does improve how representative this setup is of in situ burning conditions, but to what extent this representation is accurate is currently uncertain. The method nevertheless features the most realistic in situ burning laboratory conditions currently available for simultaneously studying the flammability and burning efficiency of crude oil on water.
In situ burning of spilled crude oil on water is a marine oil spill response method that removes the spilled oil from the water surface by burning it and converting it to soot and gaseous combustion products. This response method was successfully applied during the Exxon Valdez1 and Deepwater Horizon2 oil spills and is regularly mentioned as a potential oil spill response method for the Arctic3,4,5,6. Two of the key parameters that determine whether in situ burning of oil will be successful as a spill response method are the flammability and the burning efficiency of the oil. The first parameter, flammability, describes how easily a fuel can be ignited and can lead to flame spreading over the fuel surface to result in a fully developed fire. The second parameter, burning efficiency, expresses the amount of the oil (in wt%) that is effectively removed from the water surface by the fire. It is thus relevant to understand the flammability and the expected burning efficiency of different crude oils under in situ burning conditions.
The ignition of oil slicks on water for in situ burning purposes is commonly addressed as a practical problem, with qualitative discussions on ignition systems5,7,8,9. The practical approach to the ignition of spilled oil as a binary problem, and labelling oils either "ignitable" or "not ignitable" (e.g. Brandvik, Fritt-Rasmussen, et al.10) is, however, incorrect from a fundamental point of view. In theory, any fuel can be ignited given an appropriate ignition source. It is therefore relevant to quantify the ignition requirements for a wide range of different crude oil types to better understand the properties of a crude oil that would label it as "not ignitable". For this purpose, the developed method can be used to study the ignition delay time of an oil as a function of the incident heat flux, the critical heat flux of the oil and its thermal inertia, i.e. how difficult it is to heat up the oil.
In a previous study, we postulated that the main parameter that governs the burning efficiency is the heat feedback to the fuel surface11, which is a function of the pool diameter. The theory explains the apparent pool size dependency of the burning efficiency based on laboratory studies reporting low burning efficiencies (32-80%)8,12,13 and large scale studies (pool diameter ≥2 m) reporting high burning efficiencies (90-99%)14,15,16. The method discussed herein was designed to test the proposed theory. By subjecting small scale laboratory experiments to a constant external heat flux, the higher heat feedback for large scale pool fires can be simulated under controlled laboratory conditions. As such, the developed method allows studying the burning efficiency effectively as a function of the diameter by varying the external heat flux.
In addition to an external heat flux to simulate the larger scale of in situ burning operations, the experimental setups feature cooling of the oil slick by a cold-water flow, simulating the cooling effect of the sea current. The discussed method is furthermore compatible with both fresh and weathered crude oils. The weathering of crude oil describes the physical and chemical process that affect a crude oil once it is spilled on water, such as losses of its volatile components and mixing with water to form water-in-oil emulsions (e.g., AMAP17). Evaporation and emulsification are two of the main weathering processes that affect the flammability of crude oils18 and protocols for simulating these weathering processes are therefore included in the discussed method.
Herein, we present a novel laboratory method that determines the flammability and burning efficiency of crude oil under conditions that simulate in situ burning operations on sea. Previous studies on the flammability and burning efficiency of crude oils featured both comparable and different methods. The flammability of fresh and weathered crude oils as a function of an external heat flux was studied on water19 and under Arctic temperatures20. Burning efficiency studies typically focus on different types of fresh and weathered crude oils and environmental conditions at a fixed scale (e.g., Fritt-Rasmussen, et al.8 Bech, Sveum, et al.21). A recent study on the burning of crude oils contained by chemical herders is, to the knowledge of the authors, the first to study the burning efficiency for small, intermediate, and large scale experiments under similar conditions13. Large scale experiments are, however, not readily available for parametric studies due to the extensive amount of time and resources required for conducting such experiments. The main advantage of the presented method over the previously mentioned studies is that it allows for simultaneously studying both the flammability and burning efficiency of crude oil under semi-realistic conditions. The combination of studying these two parameters for crude oils as a function of both different oil types and the (simulated) pool diameter through easily repeatable experiments was previously unfeasible in practice.
This protocol makes use of two different experimental setups that are used in steps 4-8, as shown in the accompanying schematics. The first setup is the Crude Oil Flammability Apparatus (COFA) (Figure 1 and Figure 4), which is a 1.0 × 1.0 × 0.50 m3 metal water basin designed to conduct small scale in situ burning of crude oil experiments, as shown for example in Van Gelderen, Brogaard, et al.22 The second setup is a cone heater23 with a spark igniter that features a custom-made sample holder and a gas analyzer that measures the O2, CO2, and CO concentrations in the exhaust duct24 (Figure 2 and Figure 3). The technical specifications of these setups are described in additional detail in the Supplementary Document, which also includes photographs of the setups. Unless specified otherwise, data measurements (e.g., temperatures, heat fluxes, or gas concentrations) are measured digitally through a multiplexer and data logger. The data loggers are operated with a digital data acquisition program. In the protocol, the phrase "start the data logger" includes all actions according to the program instructions, as provided by the manufacturer, that are required to start the acquisition of data.
1. General Handling of Crude Oil
2. Evaporative Weathering of Crude Oil by Bubbling Pressurized Air through the Oil
Note: This step is based on Stiver and Mackay25 and Buist, Potter, et al.26
3. Emulsification of Crude Oil Using a Rotary Shaking Table
Note: This portion of the protocol has been modified from Daling, M., et al.27
4. Reference in Situ Burning Experiments in the COFA (Figure 1) for the Calibration of the Water Cooling in the Cone Setup
5. Calibration of the Water Cooling for the Cone Setup (Figure 2 and Figure 3).
6. Calibration of the Cone Heater (Figure 2-3).
7. Flammability Experiments of Crude Oil in the Cone Setup (Figure 2-3)
8. Surface Temperature upon Ignition Experiments of Crude Oil in the COFA Setup (Figure 4).
Figure 5 shows the evaporation curve of a light crude oil that was evaporated over multiple days to a loss of 30 wt% using the method described in step 2. The figure clearly shows that after the first day (19 h) of evaporative weathering, the evaporation rate is reduced significantly, which allows for pauses as mentioned in the protocol.
Figure 6 shows the ignition delay time as a function of the incident heat flux from the cone heater (step 7, Figure 2-3) for fresh Grane (a heavy crude oil) and evaporated Grane with losses of 7 wt%. The results give an example of the increased ignition delay times for evaporated crude oils. In addition, the critical heat flux, represented by the vertical asymptotes, also increases as a function of the evaporative losses. Overall, these results give an impression of the strength and exposure duration an ignition source needs to have in order to ignite these different types of crude oils. Additional results obtained with the protocol described herein can be found in Van Gelderen, Rojas Alva, et al.32
A more typical presentation of the ignition delay time as a function of the incident heat flux is shown in Figure 7. Crude oil slicks typically behave as thermally thick materials and the ignition delay time (tig) can then be described by Eq. (2)19,32.
(2)
Here, k is the thermal conductivity, ρ the density, c the specific heat coefficient, Tig the surface temperature upon ignition, T∞ the ambient temperature (assumed to be 20 °C), a the absorptivity, and the incident heat flux. Rewriting this equation gives the ignition delay time as a linear function of the incident heat flux (Eq. 3).
(3)
By plotting the ignition delay time in the form of 1/ as a function of the incident heat flux, the data should show a linear trend line, and as such allow for assessing the validity of the data. Furthermore, the slopes of the trend lines for different crude oils give an indication of their relative thermal inertias (kρc) because the lower the slope, the harder it is to heat up (and thus ignite) a crude oil.
The results for evaporated Grane (Figure 7) give a good example of a data set that fits with its linear trend line, with an R2 value of 0.991. On the other hand, the results for fresh Grane clearly start to deviate from the linear trend at higher heat fluxes (30 kW/m2). This behavior is most likely caused by the extremely short ignition delay times (<10 s) at such high heat fluxes for this type of volatile fuel. Fresh Grane, similar to other fresh crude oils, contains a high amount of volatile components that ignite very rapidly under high incident heat fluxes. One of the assumptions underlying Eq. (2) is that the time it takes for the combustible gases evaporating from the fuel to mix with oxygen and reach the spark igniter is negligible33. With ignition delay times of less than 10 seconds, however, this mixing time, which is estimated to be on the order of a few seconds, does become a significant contributor to the ignition delay time. Equation (2) is then no longer valid with these short ignition delay times, and hence the data deviates from the linear trend line. When studying the flammability of very volatile crude oils, this behavior should thus be taken into account when analyzing the ignition delay time data.
Figure 8 shows the heat release rates as a function of time for a fresh light crude oil and an emulsified light crude oil (prepared according to steps 2-3). The heat release rates are calculated with the O2, CO2, and CO concentration measurements from the gas analyzer (step 7) according to Eq. (26) from Janssens34. See the Supplementary Document for further details on these calculations. The fresh crude oil shows a typical heat release rate profile of a slowly decreasing heat release rate over time, which is representative of all crude oils that do not contain any water. The emulsified crude oil shows a good example of the explosiveness of the boilover phenomenon, with a heat release rate that rapidly increases up to a factor five times higher than the regular burning phase prior to boilover. Boilovers are highly irregular phenomena, though, and the intensity, duration, and time of occurrence depend on the stability and the volume percentage of the water inside the crude oil.
Figure 9 shows the burning efficiency and burning rate as a function of the incident heat flux for a fresh light crude oil and a heavy evaporated oil with losses of 7 wt%. Both the burning rate and burning efficiency increase with increasing incident heat flux for both crude oil types. At low heat fluxes, the burning efficiency shows a significant difference between the fresh light crude oil and the heavy evaporated crude oil. At higher heat fluxes, the burning efficiencies for these oils converge to similar values, which is typical behavior for all types of fresh and weathered crude oil. The burning rate does not show this converging trend for different oils, because the burning time also changes as a function of the incident heat flux, which can be different for each oil type. For crude oils containing water, the water fraction should in principle not be accounted for when calculating the burning efficiency and the burning rate because it is a non-combustible material. However, the water does evaporate during the burning and the onset of boilover further complicates burning efficiency and burning rate estimations as it propels oil and water droplets from the fuel. As such, emulsified crude oils may thus display deviations from the data shown, for example in Figure 9, and care should be taken when analyzing burning efficiency and burning rate results of crude oils containing water.
Figure 10 shows the surface temperature of two thermocouples at the fuel surface as a function of time for an evaporated light crude oil with losses of 20 wt% in the COFA setup (step 8, Figure 4). The result shows a clear spike in temperature after 178 s. Right before this moment, the surface temperature of the crude oil is 129 °C as measured by both thermocouples, which is the surface temperature upon ignition. In combination with the ignition delay time results for this oil (step 7), Eq. (2) can then be used to calculate the thermal inertia for the oil. Table 1 shows the thermal inertia values for this evaporated light crude oil based on its surface temperature upon ignition at 129 °C and its ignition delay times as a function of the incident heat flux. Wu, et al.19 found that the absorptivity could not be set to unity for crude oils and this term was thus included in the thermal inertia calculations. Literature values of the thermal inertia for crude oils for comparison purposes can be found in Wu, et al.19 and Ranellone, et al.20
Figure 1: Schematics of the COFA setup. The schematics include a detailed view of the Pyrex glass cylinder on its stand (left), a top view of the COFA (middle), and a cross sectional view of the full setup (right). In addition, a set of three close-ups (a-c) show the filling process of the COFA that corresponds to protocol steps 4.1 (a), 4.4 (b), and 4.5 (c). The COFA setup is used in step 4 to determine the calibration points of the burning efficiency and burning rate of a crude oil for the cone setup. Please click here to view a larger version of this figure.
Figure 2: Full schematic overview of the cone setup (not to scale). The setup consists of a cone heater with a control unit, a custom-made cone sample holder, a peristaltic pump and water cooling reservoir, and an exhaust hood with a gas analyzer. The schematics also feature a close-up of the thermocouple placement in the water tubes (step 5.1). This setup is used in step 7 to study the flammability of crude oils. Note that there is no direct contact between the oil and the cooling water in this setup, as they are separated by the metal holder. Details of the cone sample holder are given in Figure 3. Please click here to view a larger version of this figure.
Figure 3: Detailed cross-sectional schematic of the circular sample holder of the cone setup. The metal edges prevent the oil from overflowing upon ignition and are angled 30° from the oil slick to minimize re-radiation. This cone sample holder is used in step 7 to study the flammability of crude oils. Note that there is no direct contact between the oil and the cooling water in this setup, as they are separated by the metal holder. Please click here to view a larger version of this figure.
Figure 4: Schematics of the COFA setup for studying the surface temperature of crude oil upon ignition. The schematics show a top view (left) and cross-sectional view (right) and the setup includes infrared (IR) heaters, a spark igniter, and a set of three thermocouples to measure the surface temperature of the oil slick (step 8). Additional details of the COFA setup are shown in Figure 1. Please click here to view a larger version of this figure.
Figure 5: Evaporative losses of a light crude oil (DUC) as a function of time. The data were obtained using the air bubbling method described in step 2 and clearly show a reduced evaporation rate after the first day (19 h).
Figure 6: Ignition delay time results as a function of the incident heat flux for a fresh and evaporated (loss of 7 wt%) heavy crude oil (Grane). These data were obtained using the cone setup (Figure 2) according to the protocol in step 7. The vertical asymptotes show the critical heat flux (4 and 7 kW/m2) within a 1 kW/m2 upper range. The error bars indicate a data range based on 2-3 experiments.
Figure 7: Ignition delay time results as a function of the incident heat flux for a fresh and evaporated (loss of 7 wt%) heavy crude oil (Grane). These data were obtained using the cone setup (Figure 2), according to the protocol in step 7, and processed with Eq. (2). The results indicate that the evaporated Grane has a higher thermal inertia than fresh Grane, as expected. The graph furthermore shows how, for volatile crude oils at high incident heat fluxes, very short ignition delay times (<10 s) can deviate from the linear trend line. The error bars indicate a data range based on 2-3 experiments.
Figure 8: Heat release rate as a function of time for a light fresh crude oil and an emulsified light crude oil with evaporated losses of 40 wt% and containing 40 vol% water. The data were obtained from the cone setup (Figure 2) by processing the O2, CO2, and CO concentration measurements from the gas analyzer (step 7) according to Eq. (26) from Janssens34. The fresh crude oil shows a regular heat release rate profile for crude oils without water content. The emulsified light crude oil resulted in a boilover at the end of the burn and its heat release profile gives an indication of the intensity of a boilover compared to a regular crude oil fire.
Figure 9: Burning efficiency and burning rate as a function of the incident heat flux for a fresh light crude oil (DUC) and an evaporated heavy crude oil with losses of 7 wt% (Grane 7%). The data were obtained in the cone setup (Figure 2) according to Step 7 and show how the burning efficiencies of different crude oil types converge at high incident heat fluxes. All data points had a maximum error of 2.5% from the shown averages.
Figure 10: Surface temperature as a function of time for two thermocouples during an ignition experiment in the COFA with an evaporated light crude oil with losses of 20 wt%. The data were obtained in the COFA setup (Figure 4) according to the protocol in Step 8. The sudden spike in temperature after 178 s indicates the moment of ignition. The temperature right before this sudden temperature spike shows the surface temperature upon ignition.
Tig (°C) | (kW/m2) |
tig (s) | (kW*s0.5/(m2*K)) |
129 | 4 | 263 | 0.63 |
5 | 109 | 0.5 | |
10 | 36 | 0.58 | |
15 | 13 | 0.52 | |
20 | 8.4 | 0.56 | |
30 | 5.4 | 0.67 | |
40 | 5.2 | 0.88 |
Table 1: Ignition delay times and corresponding thermal inertia as a function of the incident heat flux for an evaporated light crude oil with losses of 20 wt%. The thermal inertia is calculated using Eq. (2), based on the ignition delay time data obtained in step 7 and the surface temperature upon ignition data in step 8.
Supplementary Document Please click here to download this document
Supplemental Figure 1 Please click here to download this document
Supplemental Figure 2 Please click here to download this document
Supplemental Figure 3 Please click here to download this document
The two weathering methods discussed in this paper are a relatively simple approximation of the weathering processes that a spilled oil on water is subjected to17. Other, more sophisticated weathering methods can also be used to provide weathered crude oil samples, such as the circulating flume described by Brandvik and Faksness35. The advantage of the presented methods is that they require simple equipment and can be easily conducted in a laboratory environment. The resulting weathered crude oils are then functional for the purposes of the flammability and burning efficiency studies in this protocol, as demonstrated in the Representative Results section.
One of the main limitations in the protocol is the calibration of the water cooling for the cone setup (step 5). The issue is that there is no reference data available for in situ burning field experiments at the same scale and under similar conditions as the cone setup. There are furthermore no readily available heat transfer models that can be used in practice to determine the heat balance between a burning crude oil and its flowing water sub-layer. The water cooling calibration therefore has to be based on experimental data from the COFA setup (step 4). As mentioned in the protocol, the calibration can then be conducted for either single oils or for each oil separately. Without reference data or a suitable heat transfer model, it is impossible to know which of these methods, if any, gives a correct representation of the heat balance for in situ burning of crude oil on water.
The heat balance in the cone setup is further complicated by subjecting the crude oil to an external heat flux, which may also affect the cooling capacity of the water that flows through the cone sample holder. During the burning of a crude oil under the cone heater, the outflowing water increases in temperature over time, the extent of which depends on the incident heat flux. At the maximum incident heat flux of 50 kW/m2, the water was even observed to be boiling, as steam came out of the water outlet. It is currently unclear to what extent the cooling water is directly heated by the cone heater (and not the burning oil) and whether it has a significant effect on the results. Only through an extensive empirical experimental study would it be possible to optimize the water cooling calibration for all tested incident heat fluxes and for each tested oil type. Despite these issues, implementing the water cooling in the cone setup undoubtedly improved the capability of the cone setup to represent in situ burning conditions. Preliminary experiments with a sample holder without water cooling failed to reproduce the low burning efficiencies observed in the COFA and could not be used to represent the in situ burning of crude oil. The discussed limitation is thus not a matter of whether the current cone setup represents in situ burning conditions of crude oil on water, but to which extent it correctly represents those conditions. As far as we are aware, the presented laboratory procedure is, despite this limitation, currently the most realistic method for studying the flammability and the burning efficiency of in situ burning of crude oil on water.
A critical step in the protocol is the measurement of the surface temperature upon ignition in the COFA setup (Step 8). It is very important that when the propeller is turned on, the surface of the oil slick inside the Pyrex glass cylinder is as still as it can be. If the oil surface is too much in (vertical) motion, the location and the flow of the propeller (step 4) should be adjusted to reduce the turbulence at the oil surface. Without a still oil surface, it becomes very challenging to accurately measure the surface temperature upon ignition in step 8. The choice of IR heaters is also critical to the success of this step. During the development of this protocol, it was found that the IR heaters need to have a very high radiation output, while being as compact as possible and have a cooling system that does not interfere with the temperature measurements. It is thus important to carefully select a set of IR heaters for the COFA setup in Figure 4. Ideally, the IR heaters need to be able to provide a heat flux of at least 15 kW/m2 at distances much further away than 5 cm from the Pyrex glass cylinder. This would allow using the IR heaters while the crude oil is burning. The burning efficiency of crude oils can then be tested as a function of an incident heat flux in an experimental setup that better represents in situ burning conditions.
Further improvements to the representation of in situ burning conditions during the flammability and burning efficiency experiments could be made through various modifications or additions to the COFA and cone setups. Currently, the experiments are conducted under very calm environmental conditions. It has been shown by in situ burning field studies, however, that waves and wind can also affect the flammability of crude oil5,21,36,37. To simulate such conditions, the COFA could for example be equipped with a wave maker and fans that create a wind over the water surface. Colder climates could be simulated by using a colder cooling medium in the cone setup, similar to Ranellone, et al.20, or by adding ice to water body in the COFA. Finally, the initial thickness of the crude oil slicks can be varied in the experiments, because this is also a parameter known to influence the flammability and burning efficiency of crude oils5,22.
The authors have nothing to disclose.
The authors would like to thank the Danish Council for Independent research for funding the project (Grant DDF – 1335-00282). COWIfonden funded the construction of the Crude Oil Flammability Apparatus and the gas analyzer, including the duct insert. Maersk Oil and Statoil provided the crude oils that were used for the representative results. None of the sponsors have been involved in the protocol or the results of this paper. The authors would also like to thank Ulises Rojas Alva for assistance with constructing the modified cone sample holder.
DUC Crude Oil | Maersk | N/A | Light crude oil with r = 0.853 g/ml and h = 6.750 mPa*s. |
Grane Crude Oil | Statoil | N/A | Heavy crude oil with r = 0.925 g/ml and h = 133.6 mPa*s. |
SVM 3000 Stabinger Viscometer | Anton Paar | C18IP007EN-P | Viscosity and density meter for the fresh and weathered crude oils. |
Laboshake RO500 | Gerhardt | 11-0002 | Rotary shaking table for emulsifying water and oil mixtures. |
Jebao Wave Maker RW-4 | Jebao | N/A | Propeller (flow of 500-4000 L/h) used in the COFA setup to generate a current. |
Aquabee UP 3000 | Aquabee | UP 3000 | Aquarium pump for cooling of heat flux gauge. |
Adventurer Precision Electronic Balance | OHAUS | AX5205 | Load scale used to weigh the oil for the COFA experiments and in the custom-made cone sample holder for the cone setup. |
3M Oil Sorbent Pads | VWR | MMMAHP156 | Hydrophobic absorption pads used to collect oil residues to determine the burning efficiency of the fire. |
Mass Loss Calorimeter | Fire Testing Technology (FTT) | B11325-650-1-1608 | A custom-made, circular holder was used for the testing of crude oil rather than the standard square sample holder. Includes a heat flux gauge with a range up to 100 kW/m2. |
34972A Data Acquisition / Data Logger Switch Unit | RS Components Ltd. | 702-7958 | Produced by Keysight Technologies. Operated by Keysight benchLink data logger 3 software and equipped with a 20-channel multiplexer. |
Keysight Technologies 34901A 20-channel multiplexer | RS Components Ltd. | 702-7939 | Produced by Keysight Technologies. |
Bellows-Sealed Valve | Swagelok | SS-1GS6MM | Toggle valve to open/close the water in- and outlet of the custom-made cone sample holder for the cone setup. |
Kronos 50 Peristaltic Pump | SEKO | KRFM0210M6000 | Peristaltic pump used to cool the custom-made cone sample holder for the cone setup. |
ARCTIC A28 Refrigerated Circulater | ThermoFisher Scientific | 152-5281 | Water cooling reservoir used to cool the cooling water that flows through the custom-made cone sample holder for the cone setup. Includes a SC 100 Immersion Circulator controller. |
Gas Analysis Instrumentation Console with Duct Insert | Fire Testing Technology (FTT) | B11328-650-1-1609 | Gas analyzer for O2, CO2 and CO. Uses a 34972A Data Acquisition / Data Logger Switch Unit. |
Ceramic & Stainless Steel 2.5mm Electrode | Fire Testing Technology (FTT) | M015-4 | Spark igniter from the Mass Loss Calorimeter. Used in the COFA setup to measure the surface temperature upon ignition. |
Infrared Emitter-Module M110/348 | Heraeus | 80046199 | Original Infrared heaters on which the new design with a water-cooled holder for the heating elements was based. Includes two short wave twin tube emitters (09751751). Operated by a type CB1x25 P power controller. |
Power Controller Heratron | Heraeus | 80055836 | Type CB1x25 P power controller for the infrared heaters. |