Summary

同步视频脑电图-心电图监测对小鼠癫痫模型 Neurocardiac 功能障碍的鉴别

Published: January 29, 2018
doi:

Summary

在这里, 我们提出了一个协议来记录大脑和心脏的生物信号, 在小鼠使用同步视频, 脑电图 (eeg) 和心电图 (ECG)。我们还描述的方法来分析产生的脑电图-心电图记录癫痫发作, 脑电图谱功率, 心功能, 心率变异性。

Abstract

癫痫发作可以引起心律紊乱, 如心率变化、传导阻滞、asystoles 和心律失常, 这可能增加癫痫猝死的风险 (SUDEP)。脑电图 (eeg) 和心电图 (ECG) 是广泛使用的临床诊断工具, 以监测异常的大脑和心律失常患者。在这里, 一项技术, 同时记录视频, 脑电图和心电图的小鼠, 以测量行为, 大脑和心脏活动, 分别描述。本文所描述的技术采用了栓 (, 有线) 记录配置, 其中植入的电极头上的鼠标是硬连接到录音设备。与无线遥测记录系统相比, 栓系布置具有多种技术优势, 如可能有更多的记录脑电图或其它 biopotentials 的通道数;降低电极成本;和更大的频率带宽 (, 采样率) 的录音。这项技术的基础, 也可以很容易地修改, 以适应记录其他生理, 如肌电图 (肌电信号) 或描记评估的肌肉和呼吸活动, 分别。除了描述如何执行脑电图-心电记录, 我们还详细的方法, 以量化的结果数据的癫痫发作, 脑电图频谱功率, 心脏功能和心率变异性, 我们在一个例子实验演示使用鼠标癫痫由于Kcna1基因缺失。在小鼠癫痫或其他神经系统疾病模型中, 视频脑电图-心电图监测提供了一个强有力的工具来识别大脑、心脏或大脑-心脏相互作用的功能障碍。

Introduction

脑电图 (eeg) 和心电图 (ECG) 是强有力的和广泛使用的技术, 以评估在体内脑和心脏功能, 分别。EEG 是通过将电极连接到头皮1来记录电脑活动。用非侵入性脑电图记录的信号是由皮层锥体神经元产生的发货兴奋和抑制突触后电位引起的电压波动1,2。脑电图是评价和管理癫痫患者的最常见的 neurodiagnostic 测试3,4。这是特别有用的, 当癫痫发作发生时, 没有明显的抽搐行为表现, 如缺勤发作或无抽搐状态持续癫痫症5,6。反之, 非癫痫相关的情况, 导致抽搐发作或意识丧失可能被误诊为癫痫发作没有视频脑电图监测7。除了在癫痫领域的用处之外, EEG 还广泛用于检测与睡眠障碍、脑和记忆障碍有关的异常脑活动, 以及在手术中补充全身麻醉2,8,9

与脑电图相反, 心电图 (有时简称心电图) 是心脏电活动的记录10。心电图通常是通过在四肢和胸壁上贴上电极来进行的, 这样可以在收缩和松弛的每个心脏周期中检测到心肌产生的电压变化10,11。正常心脏周期的主要心电图波形成分包括 P 波、QRS 复合体和 T 波, 分别对应于心房去极化、心室去极化和心室复极,10, 11. 心电图监测通常用于确定心脏传导系统的心律失常和缺陷12。在癫痫患者中, 使用心电图识别潜在的危及生命的心律失常的重要性被放大了, 因为他们是在明显增加心脏骤停的风险, 以及突然意外死亡的癫痫13, 14,15

除了临床应用, 脑电图和心电图记录已经成为识别小鼠疾病模型中大脑和心脏功能障碍的不可或缺的工具。尽管传统上这些录音是单独进行的, 我们在这里描述了一种在小鼠中同时记录视频、脑电图和心电图的技术。在这里详细介绍的同步视频脑电图-心电图方法采用栓式记录配置, 在鼠标头上植入的电极硬连接到记录设备。历史上, 这种拴, 或有线, 配置已成为标准和最广泛使用的方法, 脑电图记录小鼠;然而, 无线脑电波遥测系统也在最近得到了发展, 并且越来越受欢迎16

与无线脑电图系统相比, 栓系安排具有若干技术优势, 可根据所需的应用而使其更可取。这些优势包括更多的频道记录脑电图或其他 biopotentials;降低电极成本;电极一次性;对信号损耗的敏感性较小;和更大的频率带宽 (i. e, 采样率) 的录音17。正确地做, 这里描述的栓录音方法能提供高质量, 无工件的 EEG 和心电图数据同时, 与相应的录影为行为监视。这种脑电图和心电图数据, 然后可以挖掘, 以确定神经, 心脏, 或 neurocardiac 异常, 如癫痫发作, 改变脑电图功率谱, 心脏传导阻滞 (i. e, 跳过心脏跳动), 和心率变异性的变化。为了演示这些 EEG-心电图定量方法的应用, 我们提出了一个使用Kcna1挖空 (-) 鼠标的示例实验。Kcna1小鼠缺乏电压门控的 Kv1.1 α亚基, 结果显示自发性癫痫发作、心功能不全和过早死亡, 使它们成为同时脑电图-心电图评价有害癫痫相关性的理想模型neurocardiac 功能障碍。

Protocol

所有的实验程序都应按照国家卫生研究院 (NIH) 的指导方针进行, 由机构的动物保育和使用委员会 (IACUC) 批准。此协议所需的主要手术工具如图 1所示。 1. 植入电极的制备 安置10插座女性 nanoconnector (i. e, 电极;图 2A)到一个桌面老虎钳与10线面对和黑色的电线在前面。使用细钳, 将第一条 (黑线) 线折叠到右侧, 第二条 (棕) 线向左…

Representative Results

为了演示如何分析从 eeg-心电图记录的数据, 以确定 neurocardiac 异常, 结果显示为一个24小时脑电图-心电图记录的Kcna1-/-鼠标 (2 月老)。这些突变的动物, 被设计为缺乏电压门控的 Kv1.1 α亚基编码的Kcna1基因, 是一个经常使用的遗传模型的癫痫, 因为他们表现出可靠和频繁的广义补药挛发作活动开始在大约2-3 周的年龄20。?…

Discussion

为了获得高质量的脑电图-心电记录, 没有任何文物, 应采取一切预防措施, 以防止退化或松动的植入电极和电线。当 EEG 头植入物变得松散时, 与大脑的导线接触会降低, 导致信号振幅降低。松散的植入物或不良的导线接触也会导致电信号失真, 将运动工件和背景噪音引入录音。为防止头部植入物可能松动, 在闭合头皮切口的基础上, 在种植体周围应用大量的牙科水泥, 以确保最大的强度和附着力。还?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了公民联合研究癫痫 (赠款编号 35489);国家卫生研究院 (赠款编号 R01NS100954, R01NS099188);和路易斯安那州立大学健康科学中心马尔科姆费斯特博士后奖学金。

Materials

VistaVision stereozoom dissecting microscope VWR
Dolan-Jenner MI-150 microscopy illuminator, with ring light VWR MI-150RL
CS Series scale Ohaus CS200 for weighing animal
T/Pump professional Stryker recirculating water heat pad system
Ideal Micro Drill Roboz Surgical Instruments RS-6300
Ideal Micro Drill Burr Set Cell Point Scientific 60-1000 only need the 0.8-mm size
electric trimmer Wahl 9962 mini clipper
tabletop vise Eclipse Tools PD-372 PD-372 Mini-tabletop suction vise
fine scissors Fine Science Tools 14058-11 ToughCut, Straight, Sharp/Sharp, 11.5 cm
Crile-Wood needle holder Fine Science Tools 12003-15 Straight, Serrated, 15 cm, with lock – For applying wound clips
Dumont #7 forceps Fine Science Tools 11297-00 Standard Tips, Curved, Dumostar, 11.5 cm
Adson forceps Fine Science Tools 11006-12 Serrated, Straight, 12 cm
Olsen-Hegar needle holder with suture cutter Fine Science Tools 12002-12 Straight, Serrated, 12 cm, with lock
scalpel handle #3 Fine Science Tools 10003-12
surgical blades #15 Havel's FHS15
6-0 surgical suture Unify S-N618R13 non-absorbable, monofilament, black
gauze sponges Coviden 2346 12 ply, 7.6 cm x 7.6 cm
cotton-tipped swabs Constix SC-9 15.2-cm total length
super glue  Loctite LOC1364076 gel control
Michel wound clips, 7.5mm Kent Scientific INS700750
polycarboxylate dental cement kit Prime-dent 010-036 Type 1 fine grain
tuberculin syringe BD 309623
polyethylene tubing Intramedic 427431 PE160, 1.143 mm (ID) x 1.575 mm (OD)
chlorhexidine  Sigma-Aldrich C9394
ethanol Sigma-Aldrich E7023-500ML
Puralube vet ointment Dechra Veterinary Products opthalamic eye ointment
mouse anesthetic cocktail Ketamine (80 mg/kg), Xylazine (10 mg/kg), and Acepromazine (1 mg/kg)
carprofen Rimadyl (trade name)
HydroGel ClearH20 70-01-5022 hydrating gel; 56-g cups
Ponemah  software Data Sciences International data acquisition and analysis software; version 5.2 or greater with Electrocardiogram Module
7700 Digital Signal conditioner Data Sciences International
12 Channel Isolated Bio-potential Pod Data Sciences International
fish tank Topfin for use as recording chamber; 20.8 gallon aquarium; 40.8 cm (L) X 21.3 cm (W) X 25.5 cm (H)
Digital Communication Module (DCOM) Data Sciences International 13-7715-70
12 Channel Isolated Bio-potential Pod Data Sciences International 12-7770-BIO12
serial link cable Data Sciences International J03557-20 connects DCOM to bio-potential pod
Acquisition Interface (ACQ-7700USB) Data Sciences International PNM-P3P-7002
network video camera Axis Communications P1343, day/night capability
8-Port Gigabit Smart Switch Cisco SG200-08 8-port gigabit ethernet swith with 4 power over ethernet supported ports (Cisco Small Business 200 Series)
10-pin male nanoconnector with guide post hole Omnetics NPS-10-WD-30.0-C-G electrode for implantation on the mouse head
10-socket female nanoconnector with guide post Omnetics NSS-10-WD-2.0-C-G connector for electrode implant
1.5-mm female touchproof connector cables PlasticsOne 441 1 signal, gold-plated; for connecting the wiring from the head-mount implant to the bio-potential pod
soldering iron Weller WESD51 BUNDLE digital soldering station
solder Bernzomatic 327797 lead free, silver bearing, acid flux core solder
heat shrink tubing URBEST collection of tubing with 1.5- to 10-mm internal diameters
heat gun Dewalt D26960
mounting tape (double-sided) 3M Scotch MMM114 114/DC Heavy Duty Mounting Tape, 2.54 cm x 1.27 m 
desktop computer Dell recommended minimum requirements: 3rd Gen Intel Core i7-3770 processor with HD4000 graphics; 4 GB RAM, 1 GB AMD Radeon HD 7570 video card; 1 TB hard drive; Windows 7 OS 
permanent marker Sharpie 37001 black color, ultra fine point
toothpicks for mixing and applying the polycarboxylate dental cement
LabChart Pro software ADInstruments power spectrum software; version 8.1.3 or greater
Kubios HRV software Univ. of Eastern Finland HRV analysis software; version 2.2
Notepad Microsoft simple text editor software

References

  1. Fisch, B. J. . Fisch and Spehlmann’s EEG Primer. , (1999).
  2. Constant, I., Sabourdin, N. The EEG signal: a window on the cortical brain activity. Paediatr. Anaesth. 22 (6), 539-552 (2012).
  3. Mendez, O. E., Brenner, R. P. Increasing the yield of EEG. J. Clin. Neurophysiol. 23 (4), 282-293 (2006).
  4. Smith, S. J. M. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry. 76, ii2-ii7 (2005).
  5. Bauer, G., Trinka, E. Nonconvulsive status epilepticus and coma. Epilepsia. 51 (2), 177-190 (2010).
  6. Hughes, J. R. Absence seizures: a review of recent reports with new concepts. Epilepsy Behav. 15 (4), 404-412 (2009).
  7. Mostacci, B., Bisulli, F., Alvisi, L., Licchetta, L., Baruzzi, A., Tinuper, P. Ictal characteristics of psychogenic nonepileptic seizures: what we have learned from video/EEG recordings–a literature review. Epilepsy Behav. 22 (2), 144-153 (2011).
  8. Smith, S. J. M. EEG in neurological conditions other than epilepsy: when does it help, what does it add?. J. Neurol. Neurosurg. Psychiatry. 76, ii8-ii12 (2005).
  9. Kennett, R. Modern electroencephalography. J. Neurol. 259 (4), 783-789 (2012).
  10. Thaler, M. S. . The Only EKG Book You’ll Ever Need. , (2012).
  11. Becker, D. E. Fundamentals of electrocardiography interpretation. Anesth. Prog. 53 (2), 53-63 (2006).
  12. Luz, E. J. S., Schwartz, W. R., Cámara-Chávez, G., Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed. 127, 144-164 (2016).
  13. Bardai, A., et al. Epilepsy is a risk factor for sudden cardiac arrest in the general population. PloS One. 7 (8), e42749 (2012).
  14. Lamberts, R. J., et al. Increased prevalence of ECG markers for sudden cardiac arrest in refractory epilepsy. J. Neurol. Neurosurg. Psychiatry. 86 (3), 309-313 (2015).
  15. Thurman, D. J., Hesdorffer, D. C., French, J. A. Sudden unexpected death in epilepsy: assessing the public health burden. Epilepsia. 55 (10), 1479-1485 (2014).
  16. Zayachkivsky, A., Lehmkuhle, M. J., Dudek, F. E. Long-term Continuous EEG Monitoring in Small Rodent Models of Human Disease Using the Epoch Wireless Transmitter System. J. Vis. Exp. (101), e52554 (2015).
  17. Bertram, E. H. Monitoring for Seizures in Rodents. Models of Seizures and Epilepsy. , 97-109 (2017).
  18. Mishra, V., et al. Scn2a deletion improves survival and brain-heart dynamics in the Kcna1-null mouse model of sudden unexpected death in epilepsy (SUDEP). Hum. Mol. Genet. 26 (11), 2091-2103 (2017).
  19. Thireau, J., Zhang, B. L., Poisson, D., Babuty, D. Heart rate variability in mice: a theoretical and practical guide. Exp. Physiol. 93 (1), 83-94 (2008).
  20. Smart, S. L., et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron. 20 (4), 809-819 (1998).
  21. Glasscock, E., Yoo, J. W., Chen, T. T., Klassen, T. L., Noebels, J. L. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J. Neurosci. 30 (15), 5167-5175 (2010).
  22. Moore, B. M., Jerry Jou, ., Tatalovic, C., Kaufman, M., S, E., Kline, D. D., Kunze, D. L. The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP). Epilepsia. 55 (11), 1808-1816 (2014).
  23. Ryvlin, P., et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 12 (10), 966-977 (2013).
  24. Stables, C. L., Auerbach, D. S., Whitesall, S. E., D’Alecy, L. G., Feldman, E. L. Differential impact of type-1 and type-2 diabetes on control of heart rate in mice. Auton. Neurosci. 194, 17-25 (2016).
  25. Gehrmann, J., Hammer, P. E., Maguire, C. T., Wakimoto, H., Triedman, J. K., Berul, C. I. Phenotypic screening for heart rate variability in the mouse. Am. J. Physiol. Heart Circ. Physiol. 279 (2), H733-H740 (2000).
  26. Goldman, A. M., Glasscock, E., Yoo, J., Chen, T. T., Klassen, T. L., Noebels, J. L. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci. Transl. Med. 1 (2), 2ra6 (2009).

Play Video

Cite This Article
Mishra, V., Gautier, N. M., Glasscock, E. Simultaneous Video-EEG-ECG Monitoring to Identify Neurocardiac Dysfunction in Mouse Models of Epilepsy. J. Vis. Exp. (131), e57300, doi:10.3791/57300 (2018).

View Video