Here, we present a protocol to record brain and heart bio signals in mice using simultaneous video, electroencephalography (EEG), and electrocardiography (ECG). We also describe methods to analyze the resulting EEG-ECG recordings for seizures, EEG spectral power, cardiac function, and heart rate variability.
In epilepsy, seizures can evoke cardiac rhythm disturbances such as heart rate changes, conduction blocks, asystoles, and arrhythmias, which can potentially increase risk of sudden unexpected death in epilepsy (SUDEP). Electroencephalography (EEG) and electrocardiography (ECG) are widely used clinical diagnostic tools to monitor for abnormal brain and cardiac rhythms in patients. Here, a technique to simultaneously record video, EEG, and ECG in mice to measure behavior, brain, and cardiac activities, respectively, is described. The technique described herein utilizes a tethered (i.e., wired) recording configuration in which the implanted electrode on the head of the mouse is hard-wired to the recording equipment. Compared to wireless telemetry recording systems, the tethered arrangement possesses several technical advantages such as a greater possible number of channels for recording EEG or other biopotentials; lower electrode costs; and greater frequency bandwidth (i.e., sampling rate) of recordings. The basics of this technique can also be easily modified to accommodate recording other biosignals, such as electromyography (EMG) or plethysmography for assessment of muscle and respiratory activity, respectively. In addition to describing how to perform the EEG-ECG recordings, we also detail methods to quantify the resulting data for seizures, EEG spectral power, cardiac function, and heart rate variability, which we demonstrate in an example experiment using a mouse with epilepsy due to Kcna1 gene deletion. Video-EEG-ECG monitoring in mouse models of epilepsy or other neurological disease provides a powerful tool to identify dysfunction at the level of the brain, heart, or brain-heart interactions.
Electroencephalography (EEG) and electrocardiography (ECG) are powerful and widely used techniques for assessing in vivo brain and cardiac function, respectively. EEG is the recording of electrical brain activity by attaching electrodes to the scalp1. The signal recorded with non-invasive EEG represents voltage fluctuations arising from summated excitatory and inhibitory postsynaptic potentials generated mainly by cortical pyramidal neurons1,2. EEG is the most common neurodiagnostic test for evaluating and managing patients with epilepsy3,4. It is especially useful when epileptic seizures occur without obvious convulsive behavioral manifestations, such as absence seizures or non-convulsive status epilepticus5,6. Conversely, non-epilepsy related conditions that lead to convulsive episodes or loss of consciousness may be misdiagnosed as epileptic seizures without video-EEG monitoring7. In addition to its usefulness in the field of epilepsy, EEG is also widely used to detect abnormal brain activity associated with sleep disorders, encephalopathies, and memory disorders, as well as to supplement general anesthesia during surgeries2,8,9.
In contrast to EEG, ECG (or EKG as it is sometimes abbreviated) is the recording of the electrical activity of the heart10. ECGs are usually performed by attaching electrodes to the limb extremities and chest wall, which allows detection of the voltage changes generated by the myocardium during each cardiac cycle of contraction and relaxation10,11. The primary ECG waveform components of a normal cardiac cycle include the P wave, the QRS complex, and the T wave, which correspond to atrial depolarization, ventricular depolarization, and ventricular repolarization, respectively10,11. ECG monitoring is routinely used to identify cardiac arrhythmias and defects of the cardiac conduction system12. Among epilepsy patients, the importance of using ECG to identify potentially life-threatening arrhythmias is amplified since they are at significantly increased risk of sudden cardiac arrest, as well as sudden unexpected death in epilepsy13,14,15.
In addition to their clinical applications, EEG and ECG recordings have become an indispensable tool for identifying brain and heart dysfunction in mouse models of disease. Although traditionally these recordings have been performed separately, here we describe a technique to record video, EEG, and ECG simultaneously in mice. The simultaneous video-EEG-ECG method detailed here utilizes a tethered recording configuration in which the implanted electrode on the head of the mouse is hard-wired to the recording equipment. Historically, this tethered, or wired, configuration has been the standard and most extensively used method for EEG recordings in mice; however, wireless EEG telemetry systems have also been developed recently and are gaining in popularity16.
Compared to wireless EEG systems, the tethered arrangement possesses several technical advantages that may make it preferable depending on the desired application. These advantages include a greater number of channels for recording EEG or other biopotentials; lower electrode costs; electrode disposability; less susceptibility to signal loss; and greater frequency bandwidth (i.e., sampling rate) of recordings17. Done properly, the tethered recording method described here is capable of providing high quality, artifact-free EEG, and ECG data simultaneously, along with the corresponding video for behavioral monitoring. This EEG and ECG data can then be mined to identify neural, cardiac, or neurocardiac abnormalities such as seizures, changes in EEG power spectrum, cardiac conduction blocks (i.e., skipped heart beats), and changes in heart rate variability. To demonstrate the application of these EEG-ECG quantitative methods, we present an example experiment using a Kcna1 knockout (-/-) mouse. Kcna1-/- mice lack voltage-gated Kv1.1 α-subunits and as a consequence exhibit spontaneous seizures, cardiac dysfunction, and premature death, making them an ideal model for simultaneous EEG-ECG evaluation of deleterious epilepsy-associated neurocardiac dysfunction.
All experimental procedures should be carried out in accordance with the guidelines of the National Institutes of Health (NIH), as approved by your institution's Institutional Animal Care and Use Committee (IACUC). The main surgical tools needed for this protocol are shown in Figure 1.
1. Preparing Electrode for Implantation
2. Preparing the Mouse for Surgery
3. Attaching the Electrode to the Skull
4. Implanting the Wires for ECG
5. Implanting the Wires for EEG
6. Closing the Head Incision with Dental Cement
7. Aiding Post-Surgical Recovery
8. Recording EEG-ECG Signals from a Tethered Mouse
9. Analyzing EEG Recordings
10. Analyzing ECG Recordings
To demonstrate how to analyze the data from EEG-ECG recordings to identify neurocardiac abnormalities, results are shown for a 24-h EEG-ECG recording of a Kcna1–/– mouse (2 months old). These mutant animals, which are engineered to lack voltage-gated Kv1.1 α-subunits encoded by the Kcna1 gene, are a frequently used genetic model of epilepsy since they exhibit reliable and frequent generalized tonic-clonic seizure activity beginning at about 2-3 weeks of age20. In addition to spontaneous seizures, Kcna1–/– mice also exhibit premature death coinciding with the onset of epilepsy, as well as interictal and seizure-associated cardiac dysfunction21,22. Therefore, Kcna1–/– mice are also often used to study the potential pathophysiological processes underlying sudden unexpected death in epilepsy (SUDEP), the leading cause of epilepsy-related mortality, which is believed to involve seizure-related cardiorespiratory arrest by, as of yet, poorly understood mechanisms23.
In this experiment, the EEG component of the recordings from the Kcna1–/– mouse showed frequent spontaneous seizures which are typically observed as an initial large spike at seizure onset followed by brief voltage depression, transitioning into high amplitude spiking and terminating in burst suppression patterns (Figure 8A). Using the simultaneously recorded video, these electrographic seizures were found to coincide with seizure-like behaviors, characterized by rearing and forelimb clonus which subsequently developed into full-body tonic-clonic convulsions. Of note, one of the key advantages of EEG is the ability to identify "silent" electrographic seizures that are not associated with obvious behaviors, meaning they would be missed by an observer scoring seizures based on behavior alone. The quantification of seizure incidence in this particular Kcna1–/– mouse revealed 15 seizures during the 24-h recording period (Figure 8B). The duration of these seizures averaged ~60 s, ranging from about 15-105 s (Figure 8B). To demonstrate relative spectral power density analysis of the pre- and post-ictal period, a seizure of 80-s duration was selected for evaluation using the power spectrum software and a peri-ictal spectrogram generated (Figure 8C). The post-ictal relative spectral power of the delta frequency band was increased by ~50% compared to the pre-ictal baseline (Figure 8D). In addition, the post-ictal relative power of the other higher frequency EEG bands exhibited corresponding decreases compared to the pre-ictal period (Figure 8D). The increase in post-ictal delta power and the decreases in post-ictal power of the other bands are indicative of EEG slowing, a characteristic of long, severe seizures in this model18.
Analyzing the ECG component of the recording from the Kcna1–/– mouse, the number of interictal skipped heart beats was manually counted as described above. The frequency of skipped heart beats in this Kcna1–/– mouse was 5.84/h (Table 1), which is a >5-fold increase compared to WT mice in our previous studies18,21. In the ECG of Kcna1–/– mice, skipped heart beats often exhibit a P wave that is not followed by a QRS complex, as shown in Figure 9A, indicating an atrioventricular (AV) conduction block21. Next, using the HRV software, HRV was analyzed to provide a measure of the influence of the autonomic nervous system on cardiac function in this animal. The following time domain measures of HRV were calculated for the Kcna1–/– mouse: the standard deviation of the beat-to-beat intervals (SDNN), which is an index of total autonomic variability; and the root mean square of successive beat-to-beat differences (RMSSD), which is an index of parasympathetic tone.24 Using the signal acquisition software-generated R-R interval values for the Kcna1–/– mouse (Figure 9B), the HRV software calculated a heart rate of 737 beats/min (Table 1), which is similar to WT mice in our previous studies18. The SDNN and RMSSD values were calculated to be 2.4 ms and 3.2 ms, respectively (Table 1), which are about 2- to 3-fold higher than a normal WT mouse18. The elevated time domain HRV measures in this Kcna1–/– mouse indicate increased parasympathetic tone, suggesting abnormal autonomic control of the heart. Next, we used HRV software to calculate the following values of HRV in the frequency domain, which are summarized in Table 1: the low frequency power percentage (LF); the high frequency power percentage (HF); and the LF/HF ratio. The HF components are thought to reflect parasympathetic modulation, whereas the LF components are thought to reflect a combination of sympathetic and parasympathetic influences25. The LF/HF ratio is used to capture the relative balance of parasympathetic and sympathetic activity.
Finally, in addition to deriving quantitative measures of neural and cardiac dysfunction, the EEG-ECG recordings can also be analyzed qualitatively for the temporal relationship between EEG and ECG abnormalities to identify potential neurocardiac dysfunction, as done previously21,26. For example, when seizures or interictal epileptiform discharges are identified in the EEG, the corresponding ECG can be inspected for cardiac abnormalities, such as conduction blocks or arrhythmias, that may be evoked by epileptic brain activity. In Kcna1–/– mice, seizures sometimes evoke bradycardia or asystole that can progress to lethality21,22. In another epilepsy model, the Kcnq1 mutant mouse, conduction blocks and asystoles occur concurrently with interictal EEG discharges, suggesting they are a consequence of pathological neurocardiac interplay26. Thus, simultaneous recordings of EEG and ECG provide a more complete picture of the interaction between the brain and the heart, which is especially important in epilepsy since seizures can evoke potentially lethal cardiac dysfunction.
Figure 1. Surgical tools needed for the procedure. (1) surgical blade #15; (2) scalpel handle #3; (3) Adson forceps; (4) Olsen-Hegar needle holder; (5) fine scissors; (6) Dumont #7 forceps; (7) Michel wound clips; (8) Crile-Wood needle holder; (9) micro drill with 0.8-mm bit; (10) electric trimmer. Please click here to view a larger version of this figure.
Figure 2. Preparing the electrode for implantation. (A) Example of a 10-socket female nanoconnector (i.e., electrode). (B) The electrode in the tabletop vise with the wires to be implanted for EEG and ECG folded down. The wire colors are indicated. The remaining wires, which are pointed upwards, will be cut off. The inset shows a magnified view of the wires coming out of the electrode. (C) Marking the blue ECG wire to indicate where to strip off the insulation. (D) Using a scalpel blade to strip off the wire insulation revealing the silver filaments inside. (E) The final configuration of the prepared electrode, showing the trimmed EEG wires and the stripped ECG wires with the mounting tape adhered to the top. The inset shows a magnified view of the mounting tape and the wires coming out of the electrode. Please click here to view a larger version of this figure.
Figure 3. Surgical attachment of the electrode to the skull. (A) Example of a mouse with the sides shaved (indicated by arrows) for ECG wire implantation. (B) Parting of the fur between the eyes and ears to make a path for incision. (C) Using a scalpel to make a scalp incision. (D) The scalp incision. (E) Example of the four marks on the skull used to indicate drill sites. (F) Placement of the electrode on the skull after drilling the burr holes. Please click here to view a larger version of this figure.
Figure 4. Tunneling and implantation of the ECG wires. (A) Example of a polyethylene tube that has been cut to about 6 cm and beveled on one end to facilitate subcutaneous tunneling. (B) Tunneling subcutaneously with the polyethylene tube beginning at the lateral incision site. (C) Feeding the ECG wire from the electrode on the head through the tube. (D) Pulling the wire taut after removing the tube. (E) Applying a suture to the uninsulated exposed portion of the ECG wire to hold it in place on the underlying tissue. (F) Closure of the side incision with a wound clip. Please click here to view a larger version of this figure.
Figure 5. Implanting the EEG wires. (A) Grasping the red EEG wire and feeding it horizontally into the burr hole in the skull, following placement of the black ground wire. (B) The final configuration of the nanoconnector and wires following implantation. (C) Schematic showing placement of the bilateral EEG and ECG wires, as well as reference (REF) and ground (GND) wires. Please click here to view a larger version of this figure.
Figure 6. Closing the head incision. (A) Application of dental cement around the base of the electrode beginning caudally and proceeding rostrally. (B) Example of the dental cement cap surrounding the entire nanoconnector and wires, immediately prior to final closure of the incision. (C) Example of the final sealed incision. Please click here to view a larger version of this figure.
Figure 7. Recording of video EEG-ECG signals. (A) Example of a tethered mouse during a recording. (B) Schematic showing the equipment configuration for the in vivo tethered video-EEG-ECG recording system. The wiring from a 10-pin male nanoconnector, which plugs into the female nanoconnector implanted on the skull, is soldered to 1.5-mm female cables which are connected to a 12-channel isolated bio-potential pod interface. This pod is then linked by a serial link cable to a digital communication module (DCOM), which transfers digitized data to a signal acquisition interface unit (ACQ) that is connected to a desktop computer with data acquisition software. Video is also simultaneously acquired using a network video camera positioned outside of and adjacent to the cage. The camera is linked to the computer via a power over Ethernet smart switch. (C) Representative traces of typical EEG and ECG signal data with the following filters applied: 60-Hz notch, 75-Hz low- and 0.3-Hz high-pass band filters for EEG; and a 3-Hz high-pass filter for ECG. Please click here to view a larger version of this figure.
Figure 8. Analysis of EEG signals. (A) An EEG trace showing a representative spontaneous seizure in a Kcna1–/– mouse. (B) Plot of the time durations of each seizure observed during the 24-h recording session in the Kcna1–/– mouse. The bars correspond to the mean ± standard deviation. (C) Peri-ictal spectrogram showing the frequency and power density before, during, and after the representative seizure. (D) Comparison of the relative power in each EEG frequency band during the pre- and post-ictal periods reveals an increase in relative delta power and decreases in theta, alpha, beta, and gamma power. Please click here to view a larger version of this figure.
Figure 9. Analysis of ECG signals. (A) A sample ECG trace from a Kcna1–/– mouse showing normal sinus rhythm preceding an atrioventricular conduction block, which manifests as a P wave that is not followed by a QRS complex. A P wave, QRS complex, and R-R interval are labeled for reference. (B) A representative plot of an R-R interval series obtained from the ECG recording of the Kcna1–/– mouse showing the fluctuations in the time between beats. The red line shows the low frequency trend components that get removed from the R-R interval series following detrending. Please click here to view a larger version of this figure.
Skipped heart beats/ h | Heart Rate Variability (HRV) | |||||
Time Domain | Frequency Domain | |||||
HR | SDNN | RMSSD | LF | HF | LF/HF ratio | |
(beats/min) | (ms) | (ms) | (%) | (%) | ||
5.84 | 736.8 | 2.4 | 3.2 | 52.27 | 46.38 | 1.127 |
Table 1. Quantification of skipped heart beats, heart rate (HR), and heart rate variability (HRV) in a Kcna1–/– mouse. The following time domain measures of HRV are given: standard deviation of beat-to-beat intervals (SDNN) and the root mean square of successive beat-to-beat differences (RMSSD). In the frequency domain, the following HRV measures are shown: low frequency power percentage (LF %); high frequency power percentage (HF %); and the ratio of low frequency power to high frequency power (LF/HF ratio).
To obtain high quality EEG-ECG recordings that are free from artifacts, every precaution should be taken to prevent degradation or loosening of the implanted electrode and wires. As an EEG head implant becomes loose, the wire contacts with the brain will degrade leading to decreased signal amplitudes. Loose implants or poor wire contacts can also cause distortion of the electrical signals, introducing movement artifacts and background noise to the recordings. To prevent potential loosening of the head implant, apply a generous amount of dental cement around the base of the implant when closing the scalp incision to ensure maximal strength and adhesion. Care should also be taken to ensure complete removal of fur from the skull, since fur remnants can cause post-surgical inflammation leading to swelling around the implant and premature implant detachment. Over time, the head implants have the potential to loosen due to the stress associated with repeated plugging and unplugging of the animal. Therefore, if possible, attempt to minimize the number of times the animal is plugged/unplugged by performing single long duration recordings rather than multiple short duration recordings. Another potential source of postsurgical implant damage and subsequent animal injury is physical contact between the implant and the wiretop in the animal's home cage. To eliminate the need for wiretops, food pellets and hydrating gel can be placed on the cage floor. Finally, to maintain the integrity of the ECG leads, handling of the animal should be minimized, especially along the sides of the body where the ECG wires run.
In addition to degradation of the implant or wire contacts, another potential complication of a tethered recording configuration is the possibility of the animal becoming detached (i.e., unplugged or unhooked) during an experiment leading to signal loss. Detachment can be especially troublesome for mice that experience severe convulsive seizures with running and bouncing. To minimize the likelihood of the mouse becoming detached, optimize the amount of slack in the wire tether. The best wire length is usually a balance between providing enough slack for the animal to explore all corners of the cage but not so little that there is unnecessary tension in the wires that could promote detachment. In determining the optimal wire length, ensure that there is not so much slack that the mouse can readily chew on the wire, which can lead to signal loss if the wire is broken. Using electrode nanoconnector implants with at least 10-wires (i.e., 10-pin/socket pairs) is also important for providing extra stability to the tethered connection, as nanoconnectors with less than 10-wires tend to unhook more frequently. To further reduce the likelihood of the animal becoming detached, this protocol can easily be modified by connecting the wires from the mouse's head to a low-torque commutator suspended above the recording chamber. The commutator works by rotating as the mouse moves to relieve the buildup of torsional strain in the wire, thereby preventing the mouse from unplugging.
A major strength of this tethered video-EEG-ECG protocol is the ability to modify the method for additional applications. As described here, only six of the available ten electrode wires are utilized. However, the remaining four wires could also be implanted as an additional four EEG leads to provide better spatial resolution of brain activity. Alternatively, two of the unused wires could be sutured into the muscles of the neck to record the electromyogram (EMG), which provides a measure of muscle activity that in combination with EEG is important for determining sleep/wake status. Another possible modification would be to record the animal in a whole-body plethysmography chamber that is modified to accommodate the wire tether. In plethysmography, small pressure changes associated with inspiration and expiration are converted into respiratory waveforms. Therefore, by incorporating plethysmography, it is technically possible to achieve a simultaneous recording of video, EEG, ECG, EMG, and respiration, which would represent a readout of behavior and brain, heart, muscle, and lung activities. Such comprehensive in vivo physiological recordings are virtually impossible in the telemetry systems of today making the tethered approach described here an especially powerful tool for simultaneous interrogation of multiple biosignals in mice.
The authors have nothing to disclose.
This work was supported by Citizens United for Research in Epilepsy (grant number 35489); the National Institutes of Health (grant numbers R01NS100954, R01NS099188); and a Louisiana State University Health Sciences Center Malcolm Feist Postdoctoral Fellowship.
VistaVision stereozoom dissecting microscope | VWR | ||
Dolan-Jenner MI-150 microscopy illuminator, with ring light | VWR | MI-150RL | |
CS Series scale | Ohaus | CS200 | for weighing animal |
T/Pump professional | Stryker | recirculating water heat pad system | |
Ideal Micro Drill | Roboz Surgical Instruments | RS-6300 | |
Ideal Micro Drill Burr Set | Cell Point Scientific | 60-1000 | only need the 0.8-mm size |
electric trimmer | Wahl | 9962 | mini clipper |
tabletop vise | Eclipse Tools | PD-372 | PD-372 Mini-tabletop suction vise |
fine scissors | Fine Science Tools | 14058-11 | ToughCut, Straight, Sharp/Sharp, 11.5 cm |
Crile-Wood needle holder | Fine Science Tools | 12003-15 | Straight, Serrated, 15 cm, with lock – For applying wound clips |
Dumont #7 forceps | Fine Science Tools | 11297-00 | Standard Tips, Curved, Dumostar, 11.5 cm |
Adson forceps | Fine Science Tools | 11006-12 | Serrated, Straight, 12 cm |
Olsen-Hegar needle holder with suture cutter | Fine Science Tools | 12002-12 | Straight, Serrated, 12 cm, with lock |
scalpel handle #3 | Fine Science Tools | 10003-12 | |
surgical blades #15 | Havel's | FHS15 | |
6-0 surgical suture | Unify | S-N618R13 | non-absorbable, monofilament, black |
gauze sponges | Coviden | 2346 | 12 ply, 7.6 cm x 7.6 cm |
cotton-tipped swabs | Constix | SC-9 | 15.2-cm total length |
super glue | Loctite | LOC1364076 | gel control |
Michel wound clips, 7.5mm | Kent Scientific | INS700750 | |
polycarboxylate dental cement kit | Prime-dent | 010-036 | Type 1 fine grain |
tuberculin syringe | BD | 309623 | |
polyethylene tubing | Intramedic | 427431 | PE160, 1.143 mm (ID) x 1.575 mm (OD) |
chlorhexidine | Sigma-Aldrich | C9394 | |
ethanol | Sigma-Aldrich | E7023-500ML | |
Puralube vet ointment | Dechra Veterinary Products | opthalamic eye ointment | |
mouse anesthetic cocktail | Ketamine (80 mg/kg), Xylazine (10 mg/kg), and Acepromazine (1 mg/kg) | ||
carprofen | Rimadyl (trade name) | ||
HydroGel | ClearH20 | 70-01-5022 | hydrating gel; 56-g cups |
Ponemah software | Data Sciences International | data acquisition and analysis software; version 5.2 or greater with Electrocardiogram Module | |
7700 Digital Signal conditioner | Data Sciences International | ||
12 Channel Isolated Bio-potential Pod | Data Sciences International | ||
fish tank | Topfin | for use as recording chamber; 20.8 gallon aquarium; 40.8 cm (L) X 21.3 cm (W) X 25.5 cm (H) | |
Digital Communication Module (DCOM) | Data Sciences International | 13-7715-70 | |
12 Channel Isolated Bio-potential Pod | Data Sciences International | 12-7770-BIO12 | |
serial link cable | Data Sciences International | J03557-20 | connects DCOM to bio-potential pod |
Acquisition Interface (ACQ-7700USB) | Data Sciences International | PNM-P3P-7002 | |
network video camera | Axis Communications | P1343, day/night capability | |
8-Port Gigabit Smart Switch | Cisco | SG200-08 | 8-port gigabit ethernet swith with 4 power over ethernet supported ports (Cisco Small Business 200 Series) |
10-pin male nanoconnector with guide post hole | Omnetics | NPS-10-WD-30.0-C-G | electrode for implantation on the mouse head |
10-socket female nanoconnector with guide post | Omnetics | NSS-10-WD-2.0-C-G | connector for electrode implant |
1.5-mm female touchproof connector cables | PlasticsOne | 441 | 1 signal, gold-plated; for connecting the wiring from the head-mount implant to the bio-potential pod |
soldering iron | Weller | WESD51 BUNDLE | digital soldering station |
solder | Bernzomatic | 327797 | lead free, silver bearing, acid flux core solder |
heat shrink tubing | URBEST | collection of tubing with 1.5- to 10-mm internal diameters | |
heat gun | Dewalt | D26960 | |
mounting tape (double-sided) | 3M Scotch | MMM114 | 114/DC Heavy Duty Mounting Tape, 2.54 cm x 1.27 m |
desktop computer | Dell | recommended minimum requirements: 3rd Gen Intel Core i7-3770 processor with HD4000 graphics; 4 GB RAM, 1 GB AMD Radeon HD 7570 video card; 1 TB hard drive; Windows 7 OS | |
permanent marker | Sharpie | 37001 | black color, ultra fine point |
toothpicks | for mixing and applying the polycarboxylate dental cement | ||
LabChart Pro software | ADInstruments | power spectrum software; version 8.1.3 or greater | |
Kubios HRV software | Univ. of Eastern Finland | HRV analysis software; version 2.2 | |
Notepad | Microsoft | simple text editor software |