Here, we describe a minimally invasive laparoscopic technique for serial sampling of liver and mesenteric lymph nodes (MLN) in macaques that allows for increased sampling frequency, and reduces the potential for surgical complications when compared to performing a laparotomy.
The mesenteric lymph nodes (MLN) and the liver are exposed to microbes and microbial products from the gastrointestinal (GI) tract, making them immunologically unique. The GI tract and associated MLN are sites of early viral replication in human immunodeficiency virus (HIV) infection and the MLN are likely important reservoir sites that harbor latently-infected cells even after prolonged antiretroviral therapy (ART). The liver has been shown to play a significant role in immune responses to lentiviruses and appears to play a significant role in clearance of virus from circulation. Nonhuman primate (NHP) models for HIV and Acquired Immunodeficiency Syndrome (AIDS) closely mimic these aspects of HIV infection and serial longitudinal sampling of primary sites of viral replication and the associated immune responses in this model will help to elucidate critical events in infection, pathogenesis, and the impact of various intervention strategies on these events. Current published techniques to sample liver and MLN together involve major surgery and/or necropsy, which limits the ability to investigate these important sites in a serial fashion in the same animal. We have previously described a laparoscopic technique for collection of MLN. Here, we describe a minimally invasive laparoscopic technique for serial longitudinal sampling of liver and MLN through the same two port locations required for the collection of MLN. The use of the same two ports minimizes the impact to the animals as no additional incisions are required. This technique can be used with increased sampling frequency compared to major abdominal surgery and reduces the potential for surgical complications and associated local and systemic inflammatory responses that could complicate interpretation of results. This procedure has potential to facilitate studies involving NHP models while improving animal welfare.
The gastrointestinal (GI) tract is the body's largest mucosal surface and is exposed to a myriad of antigens derived from food, pathogens, and endosymbiotic bacterial communities commonly referred to as the microbiome1,2. Mesenteric lymph nodes (MLN) line the GI tract and are a principal site of immune function for promoting inflammatory or tolerogenic responses towards these diverse antigens. The physical organization of the MLN creates a compartmentalized system that can respond to antigens locally without eliciting systemic responses3. Similarly, blood from the GI tract drains to the liver by way of the portal vein before returning to circulation, and is thus exposed to microbes and microbial products that have translocated from the GI tract into the lamina propria and entered the bloodstream4. The liver also functions as a secondary lymphoid organ and has a large number of immune cells, including specialized macrophages, to remove translocated microbes5,6. Thus, the MLN and the liver are the primary immune organs exposed to commensal and pathogenic bacteria from the GI tract, as well as the milieu of antigens from other sources, making them unique and important from an immunological perspective.
The MLN are critical sites for evaluation of the virologic and immunologic effects of human immunodeficiency virus (HIV) or pathogenic simian immunodeficiency virus (SIV) infection, and are likely involved in early dissemination of SIV following intrarectal challenge. Gut-associated lymphoid tissue is known to be a major site of persistent HIV replication, despite effective control of viremia by modern antiretroviral therapies (ART)7. In SIV infection models, MLN have been shown to be important reservoirs of latent virus and may be the primary reservoir8,9. The liver is also important in lentiviral infection as evidenced by the accumulation of SIV specific CD8+ T cells in the livers of macaques during acute SIV infection10. Further, it is the major organ responsible for clearing the virus from circulation11.
HIV and SIV infection are associated with altered GI microbiota, disrupted GI epithelial integrity, and increased translocation of microbes and microbial products from the colon into the periphery and circulation12,13. These processes are associated with local and systemic immune activation, and increased morbidity and mortality in HIV infected individuals14. In SIV infection, translocated bacteria have been observed in the MLN15, whereas accumulation of microbial products in the liver has been shown to result in inflammation and damage to the organ16. Thus, in the context of HIV and SIV infections, the MLN and liver can be highly informative for understanding the inflammatory processes driven by GI-resident bacteria.
Here, we present a minimally invasive laparoscopic technique for serial sampling of the MLN and liver in non-human primates (NHPs). We demonstrate successful performance of this technique on two healthy female rhesus macaques (RMs), sampling each animal two times, with 160 days in between each surgery. We go on to use these samples to evaluate and compare key leukocyte and lymphocyte populations within each organ using flow cytometry, and demonstrate highly consistent data between the two time points.
Animals were housed and cared for in Association for the Assessment and Accreditation of Laboratory Animal Care international (AAALACi) accredited facilities, and all animal procedures were performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) of University of Washington and Washington National Primate Research Center.
1. Surgical Preparation, Anesthesia, and Analgesia
2. Surgery
Note: For further information of laparoscopy in small animals, see reference21.
3. Liver Biopsy Processing and Lymphocyte Analysis
Detailed methods for processing of laparoscopically collected MLN, as well as cellular yields, and leukocyte frequencies in these organs have been previously reported13. Figure 1 shows cellular yield and viability data comparing the MLN and liver biopsies collected at two time points 160 days apart from two healthy female RMs using this laparoscopic technique. We found that cellular yield from the MLN was significantly higher than from the liver (P = 0.0021), with an average of 33.5 x 106 and 6.74 x 106 cells obtained, respectively. Dead cell staining and analysis by flow cytometry indicated that >90% of the cells isolated from both organs were viable.
Using flow cytometry, we evaluated and compared the abundance of leukocytes and lymphocytes in the MLN and liver. A representative gating scheme for the liver is shown in Figure 2, where we first gated on single cells to exclude aggregates, followed by selection of only viable cells, then selection of CD45+ cells, and finally CD3+ cells. From the CD3+ population, we evaluated abundances of CD4+ and CD8+ T cells, while we evaluated abundances of CD14+ and CD20+ cells from the CD3- populations. Representative flow cytometry plots showing CD45+ and CD3+ populations from the MLN and liver of both animals at Day 0 and Day 160 are shown in Figure 3, while Figure 4 shows leukocyte and lymphocyte abundances for the two samplings of the two animals. The MLN showed significantly higher abundances of CD45+ cells than did the liver (average 76.9% and 7.66% of viable cells, respectively, P= 0.0002). Not surprisingly, the MLN showed significantly higher proportions of CD3+ T cells (P < 0.0001) and CD4+ T cells (P = 0.0004). Conversely, the liver was significantly enriched for CD14+ leukocytes compared to the MLN (P = 0.0036). The MLN showed a higher average of CD8+ T cells, but this was not significant. Surprisingly, for these two animals both organs demonstrated similar abundances of CD20+ B cells. The cellular yields and abundances of different leukocyte and lymphocyte subsets from the MLN in this study confirmed previously reported values23.
Figure 1. Total Cellular Yield (top) and Cell Viability (bottom) from Serially Collected MLN and Liver Biopsies. The MLN showed significantly higher cell yields than did the liver. However, both sample types provided ample cells for downstream analyses. Cell viability, measured by flow cytometrically using a fixable dead cell amine stain, showed that both sample types typically yielded > 90% cell viability after tissue dissociation. Error bars represent standard deviation between samples. Please click here to view a larger version of this figure.
Figure 2. Representative Flow Cytometry Gating Strategy. First, aggregated cells were excluded, followed by selection of only viable cells after staining using a fixable dead cell amine stain. Next, CD45+ leukocytes were selected, followed by selection of CD3+ T cells. From the CD3+ population, CD4+ and CD8+ T cells were analyzed. From the CD3– population, CD14+ and CD20+ cells were analyzed. This gating strategy was also used for the MLN. Please click here to view a larger version of this figure.
Figure 3. Flow Cytometry Plots from MLN and Liver of Two Animals Longitudinally. MLN and liver samples were collected 160 days apart for both animals. (A). MLN CD45+ cells (leukocytes); (B) Liver CD45+ cells (leukocytes); (C) MLN+ CD3+ cells (T cells); (D) Liver CD3+ cells (T cells). For both animals, the MLN showed higher proportions of CD45+ and CD3+ cells compared to the liver. Across time, the frequencies of these populations were similar for both animals. Please click here to view a larger version of this figure.
Figure 4. Frequencies of CD45+ Cells (left) and Various Leukocyte and Lymphocyte Subpopulations (right) Across 23 Individual Samplings. The MLNs displayed significantly greater frequencies of CD45+, CD3+, and CD4+ cells, while the liver showed significantly greater frequencies of CD14+ leukocytes, demonstrating the unique functions of each organ. Error bars represent standard deviation between samples. Please click here to view a larger version of this figure.
Here, we demonstrate a minimally invasive technique for serial collection of MLN and liver biopsies that had a 100% success rate in these and other animals not described in this study. Furthermore, use of this technique on the same animals across time has not been associated with any adverse events. Indeed, there have been no complications resulting from use of this technique in other cohorts of animals that were infected with SIV, simian/human immunodeficiency virus (SHIV), or Zika virus (unpublished data). Similarly, this surgery has proven successful even in animals that had previously undergone major abdominal surgery, and in thrombocytopenic animals (unpublished data). We demonstrated that these samples can be collected through the same two ports by reversing the camera location when switching from MLN to liver avoiding the need for additional incisions. Factors affecting the collection of MLN have been previously reported13.
Up to four collections of 3 MLN and 3 liver biopsies each have been performed across time on individual animals without complications, changes in the success rates, or alterations to the data collected. Additionally, this laparoscopic MLN/liver collection technique has been successfully combined with other procedures such as collection of peripheral LNs, endoscopic upper and lower GI biopsies, bone marrow aspiration, cerebrospinal fluid collection, and venipuncture at the same anesthetic event allowing for extensive evaluation of virologic and immunologic responses in a serial fashion (unpublished data).
The entire procedure typically takes 30 – 45 min to complete and is accomplished through two ~ 0.5 cm incisions. In obese animals, it may be necessary to make a larger incision (~1 – 1.5 cm) to retrieve MLN through and may require additional time to complete. Animals with extensive mesenteric fat often require significant experience to differentiate MLN from the surrounding fat. MLN are often found along the mesenteric vasculature and seem to be more prevalent near branch points in the vessels. A critical aspect of this technique is that it requires the selected MLN to have sufficient mobility in the mesentery to be exteriorized through the abdominal incision. As a result, this technique cannot be used to collect MLN close to the root of the mesentery. Due to magnification, it is at times easier to identify MLN with the camera, and grasping in close proximity to the MLN can help with locating and identifying the node once it is exteriorized.
Use of the Trendelenburg position may not always be required for MLN collection, and if MLN can be easily retrieved without the use of Trendelenburg position it can make liver biopsies easier as it will prevent the organs from shifting cranially. At times, after placement in Trendelenburg position, the liver is shifted up against the diaphragm and must be gently manipulated back into position prior to biopsy collection. As the port placement for the MLN collection is to the left, liver biopsies are typically taken from the left lateral and left medial liver lobes as they are closer to the cannula.
Collected MLN and liver biopsies provided ample cell yields for a variety of downstream analyses and showed high viability of the collected cells. Here, the cells were stained for flow cytometric analysis of leukocyte and lymphocyte populations, and key differences between these two important immune organs were elucidated. For example, the MLN were highly enriched for CD4+ T cells compared to the liver, owing to the importance of the MLN as central points for gathering and disseminating adaptive immune responses, as well as to the importance of CD4+ T for managing inflammatory and tolerogenic responses to the milieu antigens derived from dietary intake and GI-resident microorganisms24. However, the liver was significantly enriched for CD14+ leukocytes compared to the MLN. CD14 is expressed predominantly on monocytes and macrophages and is a key component of the receptor complex for bacterial lipopolysaccharide (LPS)25. Indeed, increased plasma concentrations of soluble CD14 are associated with microbial translocation and immune activation in HIV and pathogenic SIV infections26. Thus, higher frequencies of CD14+ leukocytes in the liver likely result from a greater bacterial burden in this organ when compared to the MLN.
Here, we demonstrate a rapid and minimally invasive surgical technique for serial collection of MLN and liver biopsies using only two small incisions for laparoscopic entry that has not led to any adverse outcomes. These samples provide a useful route to evaluate key immunological, virological, and microbiological processes that take place in the MLN and liver, which are separate and unique from systemic immunity. Similarly, liver biopsies are critical for the long-term evaluation of the effects of HIV/SIV, drug therapies, and translocated microbes, which often combine to induce significant liver damage16. Further, because the MLN and liver are immune organs exposed to GI microbiota, the ability to evaluate immunity in these organs across time provides an excellent platform for understanding the role that the microbiome plays in maintaining host immune homeostasis. Taken together, evaluation of the liver and MLN is of major importance in the context of vaccine and therapeutic efficacies, SIV viral reservoir clearance, and general mucosal immunity. The ability to collect these samples through a minimally invasive approach means that there is less risk of inflammation related to the procedure than exists with currently published techniques and less impact on the animals' physiology. In the future, we will evaluate the potential to combine the collection of MLN and liver with the collection of spleen through the same two port locations to allow for sampling of another important and distinct part of the immune system that has been shown to play a significant role in a number of disease models.
The authors have nothing to disclose.
This work was supported by the NIH grant number P51OD010425.
Artficial Tears Lubricant Ophthalmic Ointment | Patterson Veterinary | 97-890-8152 | |
Priority Care Chlorhexidine 2% Scrub | Patterson Veterinary | 07-842-6153 | |
Vedco Alcohol, Isopropyl 70% | Patterson Veterinary | 07-869-6434 | |
Vedco Vetadine Scrub | Patterson Veterinary | 07-869-6772 | |
Hospira Lactated Ringer's 250 ml | Patterson Veterinary | 07-800-9325 | |
Adolescent Laparotomy Surgical Drape | Medline | DYNJP3004 | |
Access 40 L Insufflator | Dyonics | 7205832 | |
300XL Xenon Light Source | Dyonics | 7206084 | |
460P 3 – CCD Digital Camera with Head | Dyonics | 72200086 | |
Universal Camera Drape, 7” x 96” | Endoscopy Support Services | ESS-6920 | |
Universal Light Guide, 7.5 Ft | Endoscopy Support Services | US.OU225 | |
Insufflator Tubing | Endoscopy Support Services | TM-102 | |
Multipurpose Rigid Scope, 2.7mm x 187.5mm, 0 degree | Endoscopy Support Services | B30-0007-00 | |
Exam and Protective Sheath for 2.7mm x 187.5mm scope with one fixed stopcock | Endoscopy Support Services | B10-0025-00 | |
Rigid scope, 5mm x 300mm | Endoscopy Support Services | B30-0071-00 | |
Veress Needle, 2mm x 80mm | Endoscopy Support Services | 8302.08 | |
Solid Probe with Markings, 5mm x 320mm | Endoscopy Support Services | 8383.661 | |
Maryland Grasping and Dissecting Forceps with Double Action Ratchet Handle, 3.5mm x 240mm | Endoscopy Support Services | 8390.2054 | |
Biopsy Forceps, 3.5mm X 310mm | R. Wolf | 8391.4063 | |
Plastic Threaded Cannula with Insufflator Port, 3.5mm x 60mm | Endoscopy Support Services | 8903.072 | |
Plastic Threaded Cannula with Insufflator Port, 5.5mm x 60mm | Endoscopy Support Services | 8919.333 | |
Blunt Tip Trocar | Endoscopy Support Services | 8903.101 | |
Pyramidal Tip Trocar | Endoscopy Support Services | 8903.121 | |
CO2 | Airgas | CD USPE | |
RPMI 1640 | Fisher Scientific | SH30027FS | with L-Glutamine |
RNAlater Stabilization Solution | ThermoFisher Scientific | AM7021 | |
Penicillin-Streptomycin | Sigma Aldrich | P4333 | |
Liberase TM Research Grade | Sigma Aldrich | 5401119001 | Commercially available colleganse solution |
Dnase I from bovine pancrease | Sigma Aldrich | D5025 | |
70 µm cell strainers | Morganville Scientific | CSS0200 | |
5mL Syringe | BD | 309646 | |
50mL Conical Centrifuge Tubes | ThermoFisher Scientific | 339652 | |
Fetal Bovine Serum | Fisher Scientific | SH3007003 | |
5mL Round-Bottom polystyrene tubes | Fisher Scientific | 14-959A | |
PBS | Fisher Scientific | SH3025601 | |
LIVE/DEAD Aqua Fixable Dead Cell Stain Kit | ThermoFisher Scientific | L34957 | Amine dead cell stain |
CD45-PerCP (clone D058-1283) | BD Biosciences | 558411 | |
PE-CF594 Mouse anti-Hu CD3 (clone SP34-2) | BD Biosciences | 562406 | |
BV605 Mouse Anti-Hu CD4 (clone OKT4) | Biolegend | 317438 | |
APC-H7 Mouse anti-Hu CD8 (clone SK1) | BD Biosciences | 560179 | |
PE-Cy5 Mouse Anti-Hu CD20 (clone 2H7) | BD Biosciences | 555624 | |
BV786 Mouse Anti-Hu CD14 (clone M5E2) | BD Biosciences | 563698 | |
16% PARAFORMALDEHYDE AQ SOLUTN | Fisher Scientific | 50-980-487 | |
LSR II Flow Cytometer | BD | NA |