This protocol describes large-scale reconstructions of selective neuronal populations, labeled following retrograde infection with a modified rabies virus expressing fluorescent markers, and independent, unbiased cluster analyses that enable comprehensive characterization of morphological metrics among distinct neuronal subclasses.
This protocol outlines large-scale reconstructions of neurons combined with the use of independent and unbiased clustering analyses to create a comprehensive survey of the morphological characteristics observed among a selective neuronal population. Combination of these techniques constitutes a novel approach for the collection and analysis of neuroanatomical data. Together, these techniques enable large-scale, and therefore more comprehensive, sampling of selective neuronal populations and establish unbiased quantitative methods for describing morphologically unique neuronal classes within a population.
The protocol outlines the use of modified rabies virus to selectively label neurons. G-deleted rabies virus acts like a retrograde tracer following stereotaxic injection into a target brain structure of interest and serves as a vehicle for the delivery and expression of EGFP in neurons. Large numbers of neurons are infected using this technique and express GFP throughout their dendrites, producing "Golgi-like" complete fills of individual neurons. Accordingly, the virus-mediated retrograde tracing method improves upon traditional dye-based retrograde tracing techniques by producing complete intracellular fills.
Individual well-isolated neurons spanning all regions of the brain area under study are selected for reconstruction in order to obtain a representative sample of neurons. The protocol outlines procedures to reconstruct cell bodies and complete dendritic arborization patterns of labeled neurons spanning multiple tissue sections. Morphological data, including positions of each neuron within the brain structure, are extracted for further analysis. Standard programming functions were utilized to perform independent cluster analyses and cluster evaluations based on morphological metrics. To verify the utility of these analyses, statistical evaluation of a cluster analysis performed on 160 neurons reconstructed in the thalamic reticular nucleus of the thalamus (TRN) of the macaque monkey was made. Both the original cluster analysis and the statistical evaluations performed here indicate that TRN neurons are separated into three subpopulations, each with unique morphological characteristics.
Neuroanatomy is one of the foundations of neuroscience1 and recent interest in "connectomics" has renewed enthusiasm for understanding the morphological diversity of neuronal populations and the connections between specific neurons2. Methods for labeling and reconstructing neurons have greatly improved with recent innovations, including genetic and virus-mediated circuit tracing approaches3,4, enabling more comprehensive morphological surveys of neuronal populations5. In addition to improvements in labeling individual neurons, quantitative data analysis techniques have also emerged that enable independent and unbiased classification of neurons into distinct subpopulations based on morphological data5,6. These unbiased techniques are an improvement upon more traditional qualitative classification methods that have been the standard in the field for over a century. The goal of this study is to outline, step-by-step, the combination of virus-mediated labeling of neurons within a selective population, large-scale reconstructions of a comprehensive sample of these neurons, and quantitative data analysis based on independent clustering with statistical evaluation. By combining these methods, we outline a novel approach toward the collection and analysis of neuroanatomical data to facilitate comprehensive sampling and unbiased classification of morphologically unique neuronal types within a selective neuronal population.
As an example of these methods, we describe our analysis of a large population of neurons within a single sector of the thalamic reticular nucleus (TRN) of the macaque monkey. These data are from a prior study7. Methods for selectively labeling TRN neurons projecting to the dorsal lateral geniculate nucleus of the thalamus (dLGN) using surgical injection of modified rabies virus encoding EGFP4,8 (see Table of Specific Materials/Equipment, row 2) are outlined. This modified rabies virus lacks the gene encoding an essential coat protein, eliminating trans-synaptic movement of the virus. Once the virus enters axon terminals at the injection site, it acts like a traditional retrograde tracer with the important benefit of driving EGFP expression throughout the full dendritic arborization of infected neurons5,9,10. Accordingly, this G-deleted rabies virus can be utilized to selectively infect and label any neuronal population following injection and retrograde transport.
In order to perform a comprehensive analysis of a specific neuronal population, it is important to sample from a broad distribution of neurons within the population. Because the virus-mediated labeling technique produces complete intracellular, "Golgi-like" fills of many neurons with axons at the virus injection site, it is possible to reconstruct a very large sample of neurons within the full extent of a brain structure. Additionally, because the modified rabies virus is so effective at infecting and labeling large numbers of neurons, it is possible to reconstruct hundreds of neurons per animal. Procedures for sampling 160 neurons throughout the visual sector of the TRN11 in order to generate a comprehensive sample of dLGN-projecting TRN neurons are outlined. The process of reconstructing individual neurons using a neuron reconstruction system including a microscope, camera, and reconstruction software is described. Also described are methods to determine positions of individual neurons within a brain structure (in this case within the TRN) and to verify virus injection site volume and location within a structure (in this case within the dLGN) using volumetric contour reconstructions. Steps to export morphological data and perform independent cluster analyses based on morphological metrics measured for each neuron are outlined. There are limitations to clustering methods and there are also a variety of different clustering algorithms available. Accordingly, these options and the benefits of some of the more commonly used algorithms are described. The cluster analysis does not provide statistical verification of the uniqueness of clusters. Therefore, additional steps are outlined to verify optimal clustering as well as the relationships between morphological data within and across clusters. Statistical methods for evaluating clusters for the TRN dataset to confirm that TRN neurons are grouped into three unique clusters based on 10 independent morphological metrics are described.
Thus, by outlining steps for selectively labeling, reconstructing, and analyzing morphological data from a specific neuronal population, we describe methods for quantifying morphological differences among neurons within a population. Prior findings of distinct neuronal types within the visual sector of the macaque monkey TRN are confirmed with separate statistical evaluation methods. Together, we hope these techniques will be broadly applicable to neuroanatomical datasets and help establish quantitative classification of the diversity of neuronal populations through the brain.
Note: The tissue examined in this study was prepared as a part of a separate study5. Therefore, all of the experimental methods involving the use of animals have been described in detail in the Experimental Methods section of Briggs et al. (2016). All procedures involving animals conducted as a part of the prior study were approved by the Institutional Animal Care and Use Committees. The steps for injection of virus into the dLGN and histological processing of brain tissue are described briefly below in sections 1 – 2.
1. Stereotaxic Injection
2. Tissue Harvesting, Sectioning, and Staining
3. Neuronal Reconstruction
NOTE: All reconstructions for original experiments were made using a neuron reconstruction system made up of a microscope (see Table of Specific Materials/Equipment, row 14), attached camera (see Table of Specific Materials/Equipment, row 13), and reconstruction software package (see Table of Specific Materials/Equipment, rows 11 – 12). Software-assisted neuronal reconstruction enables visualization of tissue slides overlaid with computer-based drawings of neuronal processes. Importantly, the software digitizes morphological reconstruction data in three dimensions, enabling extraction of position-specific morphological information. The associated data extraction program (see Table of Specific Materials/Equipment, row 12) enables extraction of a rich set of morphological data from each saved reconstruction.
4. Independent Clustering
Note: Independent cluster analyses enable unbiased analyses of large, multi-dimensional datasets that might otherwise be difficult to visualize and, importantly, provide a quantitative assessment of morphological diversity. A matrix-based programming platform is quite useful for the analysis of multi-dimensional datasets and enables sophisticated data manipulations and statistical analyses. The functions listed in steps 4 – 6 are defined in the programming platform listed in the Table of Specific Materials/Equipment, row 15.
5. Verification of Clustering
Note: As stated above, the cluster analysis itself does not directly provide a statistical assessment of whether the clusters illustrated in the cluster dendrogram are unique and representative of the sample. Methods for verifying clusters from the dendrogram have been proposed15, however these do not provide statistical verification of optimal clustering. There are multiple methods for verifying optimal clustering.
6. Statistical Analyses of Clustered Data
We have shown previously that large-scale reconstructions of neurons within a selective population is feasible following injection of modified rabies virus into the dLGN5. Recently, the same tissue was utilized to reconstruct 160 neurons in the visual sector of the TRN (Bragg et al., in review; Figure 2A-B) following the detailed methodological steps described above. In the TRN study, three unique clusters of TRN neurons were identified based on independent cluster analysis of 10 morphological metrics: cell body area, cell body roundness, medial-lateral position relative to the center of the TRN, dorsal-ventral position within the TRN, number of dendritic trees, average dendritic distance to nodes, average length of 3rd and higher order dendrites, average angle of 1st order dendrites, average phase angle of the total dendritic arborization, and angular deviation of the total dendritic arborization. TRN neurons were equivalently distributed across these three clusters (Figure 2C). Separate statistical comparisons of all 10 morphological metrics across neurons in the three clusters yielded statistically significant differences across clusters for all but two of the morphological metrics included in the original cluster analysis. Thus, based on the hierarchical tree dendrogram generated from the cluster analysis (Figure 2C) and the separate statistical comparisons of morphological metrics across clusters, TRN neurons are classified into three unique groups.
In this study, we specifically wanted to apply statistical methods to separately evaluate clusters determined with a cluster analysis. The TRN dataset from the prior study was evaluated to determine whether the three clusters observed were optimal. Separate additional cluster analyses, namely PCA and GMM clustering, were performed to verify the prior clustering methods (Figure 1). Three key outcomes separately verify the prior cluster analysis. Firstly, when the original cluster analysis method was evaluated using the 'evalclusters' function specifying the 'linkage' function to generate clusters, the optimal number of clusters was 3, matching the original conclusion based on the hierarchical tree dendrogram (Figure 2C). Secondly, PCA was performed on the original data matrix of 10 morphological metrics for 160 TRN neurons as an alternative means of grouping neurons based on contributions of morphological metrics. Three GMMs were generated, assuming TRN neurons were grouped into 1, 2, or 3 unique clusters. The negative log likelihood (NLL) and Akaike information criterion (AIC) yielded the lowest, and therefore most informative, values and both values were optimal when the GMM used 3 clusters to describe TRN morphological data (Figure 3). Thirdly, the GMM-based clustering was separately evaluated using the 'evalclusters' function and the optimal number of clusters was 3. Thus observations of the hierarchical tree dendrogram, statistical comparisons of morphological metrics across neurons separated into the three clusters, PCA and GMM-based clustering, and separate evaluations of each clustering method (linkage and GMM), all yielded the same outcome that TRN neurons are optimally separated into 3 clusters based on the 10 morphological metrics utilized.
Figure 1: Data Format. Example Data matrix with n rows corresponding to the number of neurons and m = 5 columns corresponding to the total number of independent variables to include in the cluster analysis (do not include headers in Data matrix).
Figure 2: Independent Clustering of 160 TRN Neurons. A. Left, photograph of single coronal section through the dLGN of one animal, stained for cytochrome oxidase activity to visualize dLGN layers and against GFP to visualize virus injection. Arrow indicates regions of dense retrogradely labeled TRN neurons. Section orientation follows the dorsal-ventral/medial-lateral (DV/ML) compass below and scale bar represents 500 μm for all panels in A. Second from left, contour outlines of dLGN (red) and TRN (maroon) for all sections containing virus injection (black contours). Yellow stars indicate injection site centers. Orientation and scale bars as in A. Third from left, 3-d renderings of contours and injection site, orientation and scale bars as in A. Right, maps of locations of reconstructed TRN neurons, color-coded according to cluster assignment (C) within a single aggregate TRN contour (maroon). Orientation and scale bars as in A. B. Left, aggregate contours of TRN (black) and dLGN (grey) with 5 reconstructed TRN neurons colored warm to cool according to their medial-lateral position within the TRN. Orientation according to the DV/ML compass in A, scale bar represents 500 μm. Right, photographs of the same 5 TRN neurons with color-matched scale bars representing 100 μm. C. Hierarchical tree dendrogram following cluster analysis illustrating linkage distances between 160 reconstructed TRN neurons based on 10 independent morphological metrics. Three clusters illustrated in blue, green, and red. All portions of this figure are adapted from figures included in Bragg et al. (in review). Please click here to view a larger version of this figure.
Figure 3: Cluster Evaluation. Plot of two different criterion values, negative log likelihood (NLL, red) and Akaike information criterion (AIC, blue) generated from three GMMs assuming 1, 2, or 3 clusters. GMMs with 3 clusters provide the lowest criterion values.
Supplemental Code File: Example code, written in a Matlab-compatible language, to perform cluster analysis on an example Data matrix followed by cluster evaluation using PCA and GMM approaches. Please click here to download this file.
Neuroanatomical studies have remained a pillar of neuroscience and recent interest in connectomics and structure-function relationships has renewed enthusiasm for detailed morphological characterization of selective neuronal populations. Traditionally, neuroanatomical studies have relied on qualitative classifications of neurons into morphologically distinct classes of neurons defined by expert neuroanatomists. With advances in the techniques for reconstructing neurons and extracting morphological data, it is now possible to utilize more sophisticated and quantitative data analysis methods to classify morphologically distinct neuronal classes in an unbiased manner. In this study, step-by-step methods are outlined for 1) selectively labeling hundreds of individual neurons using virus-mediated retrograde labeling methods; 2) systematically reconstructing hundreds of individual neurons to form a comprehensive and therefore representative sample of neurons within a selective population; and 3) independent clustering analyses with statistical evaluation to determine optimal clusters of neurons within a selective population based on morphological metrics. These analysis methods are verified by applying different clustering methods to an existing dataset of TRN neurons and we demonstrate based on three separate evaluation methods that TRN neurons are optimally clustered into three morphologically distinct subpopulations.
A major advantage of the protocols outlined in this study is their flexibility. The G-deleted rabies virus has been effective in driving EGFP expression in hundreds of retrogradely labeled neurons following injection into a target structure. The same rabies virus strain is similarly effective in multiple species including macaque monkeys5,9, ferrets (Hasse & Briggs, in revision), and rodents7,8. Accordingly, modified rabies virus can be utilized to selectively label the complete dendritic arborization patterns of any population of neurons following injection into a target structure. Antibody staining against GFP followed by DAB/peroxide reaction is recommended because this causes permanent staining of labeled neurons and enables tissue sections to be visualized under a microscope without the aid of fluorescence microscopy (which bleaches fluorescent label with longer exposure). However, alternative staining methods are available and/or fluorescence can be directly visualized if desired. An advantage of measuring raw fluorescence is that different viruses driving expression of different fluorescent molecules can be combined, for example to determine whether neurons project to multiple target brain structures. Additionally, the steps outlined above may be applied to all available morphological data (for example axons and dendrites) to enable increasingly robust morphological classification of neurons. It is also important to note that smaller quantities of rabies virus can also be injected in order to generate sparser retrograde labeling, which could be advantageous for reconstructions of axons in addition to dendrites.
An additional advantage of the analysis methods outlined in this study is that multiple different clustering approaches can be utilized and compared. At each step in the cluster analysis, different options are available to calculate between-neuron distances in parameter space as well as different algorithms to generate clusters. Additionally, multiple evaluation methods are available. The latter is especially useful as a means to verify optimal clustering, as outlined in the Representative Results section. Undoubtedly, additional algorithms for generating clusters and for evaluating optimal clustering will become available as the field moves forward. Together, these analysis methods will continue to improve quantitative approaches in the field of neuroanatomy and enhance the robustness of findings.
There is growing interest in automation of neuronal reconstructions because by-hand reconstructions of individual labeled neurons are time consuming, require training and experience, and are still somewhat subjective. Because computer-based automatic neuronal reconstructions are still error-prone, electron microscopy-based neuroanatomical data are still analyzed by people (see for example17). However, it is likely that automated neuronal reconstruction will be available in the near future. Automated neuronal reconstruction will require even more scrutiny on the data analysis end, thus the clustering analyses and evaluation methods outlined here will become even more important as the field continues to advance technologically.
The authors have nothing to disclose.
We would like to thank Drs. Ed Callaway and Marty Usrey for allowing us to use the tissue prepared as a part of a prior study and Libby Fairless and Shiyuan Liu for help with neuronal reconstructions. This work was funded by the NIH (NEI: EY018683) and the Whitehall Foundation.
SADΔG-EGFP | E.M. Callaway Laboratory, Salk Institute | Prepared by Dr. F. Osakada. G-deleted rabies virus available through the Salk Institute Viral Core | |
Recording electrode: platinum/iridium or tungsten | FHC | UEPSGGSE1N2M | Visit website (www.fh-co.com) for alternative order specifications |
Nanoject II | Drummod Scientific | 3-000-204, 110V | Alternatives: picospritzer, Hamilton syringe |
Freezing microtome | Thermo Scientific | ||
DAB | Sigma Aldrich | D5905-50TAB | 3,3'-Diaminobenzidine tetrahydrochloride, tablet, 10 mg substrate per tablet. Caution: carcinogen – must be bleached before discarding |
Cytochrome C | Sigma Aldrich | C2037-100MG | |
Catalase | Sigma-Aldich | C9322-5G | |
Rabbit anti-GFP | Life Technologies/Thermo Fisher | #A-11122 | Primary antibody |
Biotinylated goat anti-rabbit | Vector Laboratories | #BA-1000 | Secondary antibody |
Neurolucida System | MicroBrightField | Software for neuron tracing and analysis. http://www.mbfbioscience.com/neurolucida | |
Neurolucida Explorer | MicroBrightField | Data export software | |
Microfire Camera | Optronics | 2-Megapixel true color microscope camera. http://www.simicroscopes.com/pdfs/microfire.pdf | |
Nikon E800 Microscope | Nikon Instruments Inc. | Biological research microscope. http://www.microscopyu.com/museum/eclipseE800.html | |
Matlab | The MathWorks Inc. | Matrix-based computational mathematics software. http://www.mathworks.com | |
Microsoft Office Excel | Microsoft | Spreadsheet program |