An experimental protocol for instrumented warm rotary forming of cast aluminum alloys employing a bespoke industrially scaled apparatus is presented. Experimental considerations including thermal and mechanical effects are discussed, as well as similitude with full-scale processing of automotive wheels.
High performance, cast aluminum automotive wheels are increasingly being incrementally formed via flow forming/metal spinning at elevated temperatures to improve material properties. With a wide array of processing parameters which can affect both the shape attained and resulting material properties, this type of processing is notoriously difficult to commission. A simplified, light-duty version of the process has been designed and implemented for full-size automotive wheels. The apparatus is intended to assist in understanding the deformation mechanisms and the material response to this type of processing. An experimental protocol has been developed to prepare for, and subsequently perform forming trials and is described for as-cast A356 wheel blanks. The thermal profile attained, along with instrumentation details are provided. Similitude with full-scale forming operations which impart significantly more deformation at faster rates is discussed.
One of the more challenging metal forming operations currently being practiced in the aerospace and transportation sectors is metal spinning, including derivatives such as shear forming and flow forming1,2. In this process, an axisymmetric workpiece is placed on a mandrel representing the final desired shape, and spun into contact with one or more impinging rollers. The workpiece being compressed between the roller and mandrel then plastically deforms, with a diverse response including combined bending, thinning and axial elongation. In a material which has limited ductility or is otherwise difficult to form, this is sometimes carried out at elevated temperature to decrease flow stress and increase ductility.
From a processing standpoint, there are a wide range of parameters which can dictate the shape and properties of the manufactured component. Numerous studies have focused on statistical techniques for optimizing various parameters3,4,5. Variables include tooling geometry, such as the shape of the tool and mandrel; forming speeds including both mandrel rotation rate and tooling feed rates; as well as material properties. When elevated temperatures are required, practitioners need to assess the minimum temperature required while still retaining a sound product.
Cast aluminum alloys are employed in a wide variety of automotive and aerospace applications, with alloy A356 used in automotive wheels. However, this alloy is not suitable for forming at room temperature6,7 owing to its limited ductility and must be formed at elevated temperatures. This introduces a host of processing complexity, principally in controlling temperature. As this material's properties change significantly with temperature8, it is particularly important to perform instrumented trials in which thermal conditions can be kept to within a reasonable processing window and be monitored. Detailed data on the thermomechanical behavior of as-cast A356 ranging from ambient temperature to 500 °C over a wide range of strain rates can be reviewed elsewhere.9
In order to support development and optimization of flow forming operations for wheel manufacturing, custom forming equipment has been developed at the Department of Materials Engineering at the University of British Columbia (Figure 1). This apparatus has been built primarily from a manual, belt-driven capstan lathe with a total output of 22 kW, and a propane torch heating system with a peak output of 82 kW (Figure 2). A mandrel with embedded thermocouples along with a rigid roller assembly (Figure 3) has been installed, which is capable of forming workpieces up to 330 mm in diameter. The mandrel has a manually activated clamping system which is able to account for large changes in workpiece diameter occurring during processing (Figure 4). A battery operated Data Acquisition (DAQ) system containing a miniature wireless computer capable of monitoring the temperature of the mandrel during forming and the blank for characterizing heating has been installed on the quill of the lathe. While other flow forming processes have been synthesized using adapted lathes4,10, the present apparatus is the first to embody in situ heating and thermal data acquisition.
A processing protocol for industrially-scaled forming operations has been developed to provide indicative processing conditions. Described subsequently, this protocol consists of tooling and workpiece preparation, forming practice, concluding with end of forming trial operations.
Figure 1: Experimental apparatus overview. Principle components which have been added to a modified capstan lathe for forming at elevated temperatures. Photograph of equipment (top) and main working directions and components labelled on a computer-aided design depiction (bottom). Please click here to view a larger version of this figure.
Figure 2: Heating system detail. A propane heating system with four discrete burners (top and bottom right) actuated from a central manifold containing a gas control solenoid (top and bottom left). Gas pressure and a discrete flow rate to each of the burners is possible, along with placement along the blank to conform to different geometries. Please click here to view a larger version of this figure.
Figure 3: Roller stand assembly detail. The original tool holder on for the lathe has been adapted to hold a roller at arbitrary angles relative to the turning axis of the mandrel via a jam nut assembly. Please click here to view a larger version of this figure.
Figure 4: Instrumented mandrel and clamp system overview. The rotary tooling has been designed to bolt directly to the lathe spindle, which is in turn supported by a live center on the tailstock (top and bottom left). Clamp assembly/operation is also depicted (top and bottom right). Please click here to view a larger version of this figure.
1. Workpiece Preparation for Forming Trials
2. Tooling Preparation
3. Forming Operations
4. Post Forming Operations
As-cast aluminum A356 workpieces were formed according to the method described in this paper. The workpieces were obtained from as-cast wheels from a North American wheel manufacturer employing the low-pressure die casting process. One workpiece instrumented with thermocouples was not formed, but underwent the pre-heating cycle (Protocol Section 3, steps 3.3-3.5) to capture the distribution of temperature across the surface of the blank during this aspect of the process. This response is shown in Figure 5. A further 3 samples were deformed to various levels, including one which received two forming passes for a high level of deformation. The first two samples and the first pass performed on the latter sample served to straighten the workpiece with little demonstrable change in wall thickness. The latter sample peak wall thickness reduction was approximately 10%, the majority of which was achieved in the second pass. Cross-sections and microstructure of the as-cast blank and those obtained in multi-pass sample are shown in Figure 6. Here, the as-cast microstructure is shown to significantly be refined by the process with dendritic features barely discernable. The interdendritic eutectic is broken up by the deformation imposed, creating a much more homogenous microstructure than in the as-cast state. This improves the overall ductility as well as fatigue and fracture properties of the component. The authors have previously described more details of workpiece geometry, specific cross-sectional changes in wall thickness, defects observed, and dimensional variation in microstructure on the full set of samples8,13.
Figure 5: Typical temperature profile of mandrel and blank. A representative transient thermal response of the blank and mandrel obtained with the heating system. Vertical dashed lines indicate where clamps were tightened during the preheating steps, and the black arrow depicts forming. The last vertical line shows where the heating system was turned off whilst the system cooled.
Figure 6: As-cast and formed result. The as-received, as-cast blank surface and geometry having a minimum inner diameter of 330 mm (top) was deformed in two passes to provide the result shown (middle). The as-cast dendritic microstructure (bottom left) is visibly modified by the forming operation and a subsequent T6 heat treatment (bottom right) as observed with optical microscopy8,13. Please click here to view a larger version of this figure.
The representative results shown above highlight that the protocol and equipment employed is capable of forming cast aluminum at elevated temperatures, and has provided a platform to determine a processing window for flow forming of wheels. The technique demonstrated can be used to explore aspects of forming envelopes, including how both formed and unformed material responds to heat treatment8. However, there is room for improvement with the current processing protocol with this apparatus.
Regarding further instrumentation, which would accelerate process model development, the inclusion of machine-tool dynamometer and tribometers11,12 to measure forming loads and friction factors on the roller would provide important information about the process conditions. This is a widely employed instrumentation technique for orthogonal machining studies, and could be readily implemented on the current machine. This additional instrumentation would provide useful data to accurately validate of modelling efforts13,14 and support the increasing industrial interest in this process. In order to effectively capture the evolution of temperature of the blank during processing, a non-contact measurement technique is desirable. However, common infrared-based techniques are hampered by aluminum's low emissivity and how the surface changes during processing. This is the principal reason why an instrumented, commissioning blank was employed to capture the typical thermal response achieved with the protocol described, and served to populate a baseline heat transfer analysis to relate mandrel surface temperature to the workpiece.
As it is largely a manual forming process for a material which is sensitive to time at temperature, some inconsistencies between run to run are to be expected. Aluminum alloys have microstructures that are highly sensitive to temperatures above 100°C due to ageing mechanisms. Therefore, the most critical steps within the protocol are 1.2 and 3.3-3.7, where the blank is at elevated temperatures. Tightening and re-seating the clamps must be conducted as quickly as possible to maintain repeatability between forming operations.
The in situ workpiece heating employed during the pre-heating step is quite inefficient and could be improved via radiative heating. The overall processing speeds in terms of mandrel and tool movements that can be attained are somewhat limited by the capabilities of the lathe employed. Higher forming speeds require a more rigid frame with a higher load capacity, particularly if the forming of a stronger material were to be attempted. Workpiece clamping and release could be improved with the addition of hydraulic or pneumatic actuation. As heat transfer from the blank to the mandrel is largely a function of the pressure imposed by the workpiece onto the mandrel, this addition could also improve a model-based approach to ascertain the workpiece temperature during forming with the existing system.
The apparatus and procedure described has shown that forming loads for this material under these conditions approaches those for standard turning operations, and remains a very cost effective process by which to perform manufacturing trials. Research into different manufacturing routes and formability can be performed away from commercial forming equipment, which is exceedingly expensive to operate. With the apparatus and protocol described, processing parameters can be investigated prior to constructing larger scale, higher throughput equipment, and to the authors' knowledge, is a unique approach.
As the protocol developed has only been applied to one specific variant of cast aluminum alloy, there is a multitude of other aluminum foundry alloys which could be investigated for a variety of applications beyond automotive wheels. As these alloys have approximately similar processing windows from a temperature perspective, the protocol developed can be readily adapted.
The authors have nothing to disclose.
The authors would like to thank Ross McLeod, David Torok, Wonsang Kim and Carl Ng for their technical support. M. J. Roy would like to acknowledge the support from EPSRC (EP/L01680X/1) through the Materials for Demanding Environments Centre for Doctoral Training and Rio Tinto Alcan for financial support through a Research Fellowship award.
Reagent/Material | |||
High temperature grease | Dow Corning | Molycote M-77 | |
High temperature lubricant | Superior Graphite | sureCOAT | |
High temperature die coat | Vesuvius/Foseco | DYCOTE 32 | |
Name | Company | Catalog Number | Comments |
Equipment | |||
Live center | Riten Industries | 17124 | Bell-head, spring loaded |
Live center adapter | Riten Industries | 431 | Adapter for lathe |
Impact wrench | Chicago Pneumatic | CP7749-2 | 1/2" drive, 0-545 ft-lb |
Torque wrench | Westward Tools | 6PAG0 | 1/2" drive, 0-250 ft-lb |
Air-powered paint sprayer | Cambell Hausfeld | DH4200 | For die coat |
Air-powered paint sprayer | Cambell Hausfeld | DH5500 | For graphite-based lubricant, high volume low pressure (HVLP) type |
Data acquisition unit | Measurement Computing | USB-2416 | |
Reed thermocouple | Omega Engineering | 88108 | |
Propane tank | Generic | 20/40 lb, POL fitted | |
Solenoid valve | Aztec Heating | SV-S121 | |
Gas regulator | Aztec Heating | 67CH-743 | 0-30 psi |
Burner tips | Exact | 3119 | Qty: 4 |
Roller bearings | SKF | 32005 X/Q | Qty: 2 |