Here, we describe a quantitative proteomics method using the technique of stable isotope labeling by amino acids in cell culture (SILAC) to analyze the effects of HIV-1 infection on host exosomal proteomes. This protocol can be easily adapted to cells under different stress or infection conditions.
Proteomics is the large-scale analysis of proteins. Proteomic techniques, such as liquid chromatography tandem mass spectroscopy (LC-MS/MS), can characterize thousands of proteins at a time. These powerful techniques allow us to have a systemic understanding of cellular changes, especially when cells are subjected to various stimuli, such as infections, stresses, and specific test conditions. Even with recent developments, analyzing the exosomal proteome is time-consuming and often involves complex methodologies. In addition, the resultant large dataset often needs robust and streamlined analysis in order for researchers to perform further downstream studies. Here, we describe a SILAC-based protocol for characterizing the exosomal proteome when cells are infected with HIV-1. The method is based on simple isotope labeling, isolation of exosomes from differentially labeled cells, and mass spectrometry analysis. This is followed by detailed data mining and bioinformatics analysis of the proteomic hits. The resultant datasets and candidates are easy to understand and often offer a wealth of information that is useful for downstream analysis. This protocol is applicable to other subcellular compartments and a wide range of test conditions.
Many human diseases, including viral infections, are often associated with distinctive cellular processes that take place in and around the affected cells. Proteins, often acting as the ultimate cellular effectors, mediate these processes. Analysis of the proteins often can provide invaluable information as to the local environment of affected cells and help us to understand the underlying mechanism of disease pathogenesis. Among various protein analysis techniques, proteomics holds particularly great promise. As a powerful, large-scale tool, proteomics can provide a systemic understanding of cellular processes, particularly in the area of the function and interaction of proteins. Analyzing specific proteins is made simpler through the development of labeling techniques, which allow investigators to monitor the expression of cellular components, particularly proteins, in the site of investigation. Although many proteomic analyses have been performed at cellular proteome scale, proteomic characterizations on subcellular compartments have proved to be particularly informative1. This is exemplified well in the studies of HIV-1 infection.
Exosomes, 30-100 nm membrane vesicles secreted by a wide range of cell types2,3, are critical components of intercellular communication and molecular transport. They were previously discovered to play important roles in the HIV-1 budding process4,5. By combining proteomic analysis with functional dissection, we found that exosomes released from HIV-1 infected cells are composed of a unique and quantitatively different protein signature and harbor regulatory molecules that impact cellular properties on neighboring receptive cells, including cellular apoptosis and proliferation6. The methods are described in this protocol, namely SILAC (stable isotope labeling by amino acids in cell culture)7 based proteomic characterization of exosomes from HIV-1 infected cells. Similar approaches can be applied to better understand other subcellular compartments during pathogenesis by adjusting the experimental stress to the specific compartment or fraction of interest and making necessary changes to the described procedures.
Given the recent development of quantitative proteomic methods, there are many to choose from when selecting the most efficient method for a particular experiment. Among these are the chemical-based iTRAQ (isobaric tags for relative and absolute quantification)8 and the label-free MRM (multiple reaction monitoring)9 techniques. Both methods are powerful tools and are good choices for specific settings. For a typical laboratory mainly working with cell lines, however, these two methods have relatively higher costs and are more time-consuming when compared to the SILAC based method. SILAC is a metabolic based labeling technique that incorporates nonradioactive isotopic forms of amino acids from the culture media into cellular proteins. Typically, SILAC experiments start with two cell populations, for example, infected and uninfected. Each is differentially labeled in its specific isotopic environment until full labeling is achieved. The labeled exosomes of these cells are then subjected to protein extraction. Once extracted, the labeled exosomal proteins are analyzed using liquid chromatography tandem mass spectroscopy10. Finally, the mass spectrometry results and significantly labeled proteins are subjected to statistical and bioinformatics analyses as well as rigorous biochemical verification. Our previous investigative reports suggest that the SILAC/exosome procedures are more appropriate for cell lines than primary cells, as cell lines are usually in an active proliferating state for efficient isotopic labeling,
1. Cell Culture and HIV-1 Infection
NOTE: Before starting experiments, it is recommended to check the cells' viability through Trypan Blue staining11 and their proliferation through a MTT assay12. It is also critical to use newly prepared SILAC medium. Various cell lines can be used, as long as they are in an actively proliferative stage, and are susceptible to HIV-1 infection, or the test condition of choice. In this protocol, use H9 cell line as the example.
2. Exosome Isolation
NOTE: Through a series of ultracentrifugation steps, exosomal fractions from culture supernatants are enriched15. Perform all the following steps at 4 °C, with an ultracentrifuge rotor that can reach a speed of at least 100,000 x g.
3. Protein Extraction and Preparation
4. Western Blotting Verification
NOTE: Western blotting is recommended to verify mass spectrometry results.
5. Proteomic Data Analysis
NOTE: The data quality assessment, data pretreatment, calculation and determination of significant protein candidates are done separately for each MS replicate. Once above analyses are completed, the analyzed data from replicates are compared and combined6,20,21.
6. Bioinformatics Verification and Characterization
NOTE: Existing genomic and bioinformatic information offers a wealth of information for almost every protein. Data mining and bioinformatics analysis on that information can help in gaining a great deal of insight into the property and functions of the significant candidates. This process is usually necessary to design proper downstream wet-lab experiments.
Figure 1A is a flowchart outlining the SILAC labeling procedure21. In order to purify the exosomes, the samples must be spun down via centrifuge. Figure 1B shows the steps of exosome purification by serial ultracentrifugation21. Once purified, the exosomes are subject to experimental proteomic analysis as outlined in the procedure.
Figure 2A is a flowchart for determining significant protein candidates from proteomic data21. The selected candidates are then used for downstream proteomics analysis. Figure 2B is an example of SILAC histogram displaying representative ratios of typical protein quantification results (This figure has been modified from Li et al.6), and Table 1 is an example of determining cutoff values for significant candidates6 from these SILAC ratio histograms. By following the steps described in Section 6.3, the cutoff values for determining significantly up- or down-regulated proteins were calculated. In this representative dataset, proteins with a heavy/light (H/L) ratio above the upper cutoff value were considered as significantly up-regulated, while proteins with a H/L ratio below the lower cutoff value were considered as significantly down-regulated. Significantly regulated candidate proteins would be subjected to further investigation.
Figure 3 displays the overall bioinformatics analysis and data mining procedures for the selected significant candidates. Table 2 is a data mining example that utilizes exosome and HIV-1/host interaction databases6 to gather information on the candidates (This table has been modified from Li et al.6). By mining current exosome and HIV-1/host interaction databases, thirteen out of the fourteen candidates were found to associate with exosomes. Five out the fourteen candidates were also known to interact with HIV-1. Among them, four candidates (HSPA4, heat shock 70 kDa protein 4; NUTF2, nuclear transport factor 2; PTGES3, prostaglandin E synthase 3; LDHB, L-lactate dehydrogenase B chain) were found to associate with both exosome and HIV-1. Among HSPA4, NUTF2, PTGES3 and LDHB, only LDHB was consistently under-expressed in the infected fraction (heavy labeled). Through a series of analyses, we selected LDHB to be the most significant candidate, which could be subjected to further study. The downstream proteomics analyses are displayed in Figure 4. Figure 4A shows brief steps of gene ontology (GO) analysis; Figure 4B lists the steps of performing DAVID analysis; Figure 4C shows how to perform network analysis using STRING. Figures 5A, 5B, and 5C are DAVID analysis of a set of fourteen proteins in BP, CC and MF; Figure 5D shows the top ten interacting partners of LDHB; Figure 5E shows that the majority of interacting partners of LDHB are also associated with exosome and HIV-1. Initial DAVID analysis results suggested that many candidates are apoptosis-related and likely participate in protein binding. Further STRING analysis confirmed that LDHB binding partners are also functionally and locationally related to exosome and HIV-1. All these results give valuable information for potential downstream investigations.
Figure 1: SILAC labeling and exosome purification using differential ultracentrifugation. (A) Two groups of cells are grown separately. One group is grown in labeled medium for six doublings for complete labeling. The other group is grown in the normal unlabeled medium for the same period. Next, the labeled cells are infected with HIV-1, while unlabeled cells are not. Finally, exosomes from both groups are isolated in parallel. (B) The samples (supernatants or pellets) used in the centrifugation at each step are indicated in the test tubes. Fractions to be discarded are noted on the right side of test tubes. The speed and length of each centrifugation are also shown. Please click here to view a larger version of this figure.
Figure 2: Steps to validating proteomic dataset(s) and determining significant protein candidates. (A) Flowchart of determining significant protein candidates from proteomic dataset(s). These four steps ensure reliable selection of significant candidates. First, an SILAC ratio histogram is plotted to assess the quality of the data. Next, less ideal candidates that could reduce accuracy are removed. In the third step, statistical methods are used to set significance thresholds for potential protein candidates. Finally, the replicate data of the significant candidates are analyzed for consistency and are merged eventually. (B) Representative histogram of SILAC ratios. The histogram revealed symmetrical distribution along ratio = 1 (log2 = 0) trend line. The log2 transformed ratios are grouped into ratio bins, and the y-axis shows the relative number of detected ratios per bin. Please click here to view a larger version of this figure.
Figure 3: Overall bioinformatics analysis and data mining procedures for significant candidates. The procedures contain exosomal and HIV-1/host data mining, Gene Ontology characterization, DAVID analysis and network prediction. Please click here to view a larger version of this figure.
Figure 4: Steps to performing gene ontology characterization, enrichment, and pathway analyses. (A) Steps to performing gene ontology (GO) characterization. To gain insight of the functions and subcellular localizations of the significant candidates, steps to performing GO analysis using appropriate software26 are illustrated. (B) Steps to performing GO Term enrichment analysis. To gain enrichment information of the significant candidates, brief steps to performing DAVID analysis are shown. (C) Steps to performing interaction and pathway analysis. To elucidate possible pathways and find functional partners, steps to performing interaction or network analysis by STRING are shown. Please click here to view a larger version of this figure.
Figure 5: Representative DAVID and STRING analysis results. (A) BP enrichment results of the fourteen candidates by DAVID analysis. Cell death related processes are significantly enriched. (B) CC enrichment results of the fourteen candidates by DAVID analysis. Many proteins have an intracellular origin. (C) BP enrichment results of the fourteen candidates by DAVID analysis. Most of the candidates participate in protein binding. (D) Top ten interacting partners of LDHB identified by STRING. (E) The majority of LDHB partners are also associated with exosome and HIV-1, which further supports the roles of LDHB in exosome/HIV-1. Please click here to view a larger version of this figure.
Table 1: Representative calculation of the cutoff values for significant protein perturbation.
Table 2: Associations between SILAC candidates and their exosomal localizations and interactions with HIV-1.
In the procedures described in this paper, we demonstrated the application of the SILAC technique to investigate the effect of HIV-1 infection on the host exosomal proteome. Initially, uninfected and HIV-1 infected cells are differentially isotope-labeled. The differentially labeled exosomes are then purified before performing protein extraction. Next, liquid chromatography-tandem mass spectrometry is employed to analyze the exosomal proteome. Finally, the resulting mass spectrometry data and potential candidate proteins are subjected to statistical and bioinformatics analyses before downstream biochemical dissections.
Critical steps throughout the protocol need to be followed to achieve optimized results. In the initial stages of the protocol, SILAC labeling could be affected by the cell type and the labeling medium. Healthy and highly proliferative cells should be used to obtain a high labeling efficiency. Critically, the labeling medium should be freshly prepared using dialyzed fetal bovine serum (FBS) rather than regular FBS. Dialyzed FBS is depleted of amino acids and peptides and is, therefore, less likely to interfere with the SILAC labeling. It should, however, be noted that dialyzed serum may not be suitable for some cell lines, especially primary cells. Normal growth in the medium with dialyzed FBS should be confirmed prior to employing the SILAC strategy. In addition, using double "heavy" isotope labeling (13C6 L-lysine and 13C615N4 L-arginine) instead of using 13C6 L-lysine singly, can increase the number of quantified peptides in the mass spectrometry analysis. The minimum number of cells needed for successful subsequent proteome analysis depends on many factors, such the sensitivity of the mass spectrometer, the mass of each cell, and proteome targeted (whole proteome or post-translational modified proteins). Based on our findings, we recommend ten million cells as an initial amount in estimating the appropriate number of cells required for the mass spectrometry.
Exosome isolation from cell culture supernatants can be improved by adding a filtration step as follows. For the suspension of cells, an initial centrifugation step at 200 x g for 10 min is done to remove cells suspended in the supernatant, followed by filtration through a 0.22 µm filter29,30. For adherent cells, the supernatant can be collected directly from the culture and filtered in the same way. Filtration is a critical step for separating exosomes from contaminating materials, such as small molecules and peptides. The exosomes can then be isolated from the supernatant using the classical ultracentrifugation method, or using commercially available exosome isolation reagents kits. The purity of the exosome can be verified by nanoparticle tracking analysis or electron microscopy31.
Since HIV-1 virions are typically similar in size to exosomes, they may contaminate exosomes purified from HIV-1 infected samples. In proteomic screens, potential viral contaminants can be filtered out by limiting the database search only to human proteins. Further isolation techniques using established methodologies such as iodixanol density gradients and immunoaffinity isolation can also be used to separate HIV-1 virions from exosomes32,33.
Next, we discuss some suggestions to ensure reliable data analysis to identify potentially significant candidates once MS results are obtained from isolated exosomes. In the initial step of the analysis, the SILAC ratio histogram should follow a normal distribution. If the data distribution is skewed in a particular direction, the reader would need to determine the cause before proceeding with analysis. For instance, the labeled and unlabeled samples may not have mixed in equal proportions. Also, some peptides may not have heavy/light SILAC ratio values, and should be eliminated from the potential protein candidates. After candidates are selected, software and databases can be employed to verify exosome enrichment, interactions with test conditions, and possible pathways. The interactions between the candidate proteins and test condition should be mined through specific databases before bioinformatics analysis. For bioinformatics characterizations, gene ontology annotations can be identified using various software and databases,
The SILAC technique employed here offers a systematic and straightforward approach to analyzing host exosomal proteome. Most biomedical laboratories would be able to adopt the procedures with minimal additional equipment and extra cost. The SILAC technique, however, is primarily designed for studies using cell lines. As such, other methods may need to be employed to study different biological samples. For instance, the label-free MRM (multiple reaction monitoring) method can be used for targeted quantification of proteins and peptides in clinical samples9,34. While in the case of determining protein content from multiple studies, the SILAC technique can also be used to investigate two or more samples. The chemical labeling method iTRAQ (isobaric tags for relative and absolute quantification) or TMT-based (tandem mass tag) methods allow much higher multiplexing and would be better-suited for multiple samples.
The procedure described here is not limited to proteomic characterization of exosomes from HIV-1 infected cells. With modifications, it can be adapted to analyze exosomes under a wide range of test and stress conditions such as bacterial infection, viral infection, and radiation. It is also suitable for studying other subcellular compartments.
The authors have nothing to disclose.
This work was supported by an ARRA supplement to the Lifespan/Tufts/Brown CFAR, P30AI042853-13S1, NIH P20GM103421, P01AA019072, R01HD072693, and K24HD080539 to BR. This work was also supported by Lifespan Pilot Research Fund (#701- 5857), Rhode Island Foundation Medical Research Grant (#20133969), and NIH COBRE URI/RIH Pilot Research Grant (P20GM104317) to ML. We thank James Myall and Vy Dang for help with the manuscript and figure preparation.
H9 cell line | ATCC | HTB-176 | |
Trypan Blue | Thermo Fisher | 15250061 | |
MTT assay kit | Thermo Fisher | V13154 | |
Dialyzed fetal bovine serum (FBS) | Thermo Fisher | 26400044 | |
SILAC Protein Quantitation Kit – RPMI 1640 | Thermo Fisher | 89982 | DMEM version (89983) |
L-Arginine-HCl, 13C6, 15N4 for SILAC | Thermo Fisher | 88434 | |
L-Lysine-2HCl, 13C6 for SILAC | Thermo Fisher | 88431 | |
HIV-1NL4-3 | NIH AIDS Reagent Program | 2480 | |
Alliance HIV-1 p24 Antigen ELISA kit | PerkinElmer | NEK050001KT | |
Refrigerated super-speed centrifuge | Eppendorf | 22628045 | |
Refrigerated ultracentrifuge | Beckman Coulter | 363118 | Should be able to reach 100,000g |
50mL Conical Centrifuge Tubes | Thermo Fisher | 14-432-22 | |
Ultracentrifuge Tubes | Beckman Coulter | 326823 | |
SW 32 Ti Rotor | Beckman Coulter | 369694 | |
RIPA buffer | Thermo Fisher | 89900 | |
Protease Inhibitor Cocktails | Thermo Fisher | 78430 | |
ThermoMixer | Eppendorf | 5384000020 | |
BCA Protein Assay Kit | Thermo Fisher | 23250 | |
Spectrophotometer | Biorad | 1702525 | |
SDS PAGE Gel apparatus | Thermo Fisher | EI0001 | |
Novex 4-20% Tris-Glycine Mini Gels | Novex | XV04200PK20 | |
Gel staining reagent | Sigma Aldrich | G1041 | |
Sequencing Grade Modified Trypsin | Promega | V5111 | |
SpeedVac Concentrator | Thermo Fisher | SPD131DDA | |
Antibody to human annexin A5 | Abcam | ab14196 | |
Antibody to human lactate dehydrogenase B chain | Abcam | ab53292 | |
Graphing and Statistical Software | Systat | SigmaPlot | Or GraphPad Prism |
Quantitative proteomics software suite | Max Planck Institue of Biochemistry | Maxquant | |
Software and databases | Various vendors | Refer to main text for details |