This manuscript describes a detailed protocol to induce acute skeletal muscle regeneration in adult mice and subsequent manipulations of the muscles, such as dissection, freezing, cutting, routine staining, and myofiber cross-sectional area analysis.
Skeletal muscle regeneration is a physiological process that occurs in adult skeletal muscles in response to injury or disease. Acute injury-induced skeletal muscle regeneration is a widely used, powerful model system to study the events involved in muscle regeneration as well as the mechanisms and different players. Indeed, a detailed knowledge of this process is essential for a better understanding of the pathological conditions that lead to skeletal muscle degeneration, and it aids in identifying new targeted therapeutic strategies. The present work describes a detailed and reproducible protocol to induce acute skeletal muscle regeneration in mice through a single intramuscular injection of cardiotoxin (CTX). CTX belongs to the family of snake venom toxins and causes myolysis of myofibers, which eventually triggers the regeneration events. The dynamics of skeletal muscle regeneration is evaluated by histological analysis of muscle sections. The protocol also illustrates the experimental procedures for dissecting, freezing, and cutting the Tibialis Anterior muscle, as well as the routine Hematoxylin & Eosin staining that is widely used for subsequent morphological and morphometric analysis.
Mammalian adult skeletal muscles are formed by groups of fascicules of multinucleated muscle cells (myofibers) that are specialized for contraction. Each myofiber is an elongated syncytium, surrounded by the sarcolemma (plasmatic membrane) and containing myofibrils, which are made up of regularly and repeatedly organized contractile proteins (actin and myosin filaments). In adult life and in resting conditions, skeletal muscles have a very low turnover of their myonuclei1; indeed, the myonuclei, which are located at the periphery of the myofiber, under the sarcolemma, are arrested in the G0 phase of the cell cycle and are unable to proliferate1,2.
Skeletal muscles have the peculiar ability to regenerate following damage, reaching homeostasis after several events of tissue remodeling that are tightly related to each other. After an acute injury or trauma, degeneration is induced, followed by regeneration processes that involve different cell populations, including a resident population of muscle cells, the satellite cells (SCs). Indeed, in the absence of any environmental stimuli, the satellite cells are in a quiescent state and are located in a specialized niche between the sarcolemma and the basal lamina3,4. Following an injury or disease, SCs become activated, proliferate, migrate to the damaged areas, and eventually differentiate, giving rise to newly forming myofibers5. Activated SCs establish cross-talk with different cell populations, mainly inflammatory cells, which are recruited in the site of trauma6-8. This cross-talk allows the cells to follow a regulated paradigm by which molecular signals drive structural modifications, eventually leading to homeostasis9. Besides SCs, inflammatory and interstitial cells, angiogenic processes, and re-innervation events are also involved, acting in a coordinated manner to repair this highly organized and specialized structure.
There is great interest in studying different aspects of skeletal muscle regeneration, not only to understand the physiology of the muscle, but also to improve therapeutic strategies that require deeper knowledge of the whole process. Several experimental approaches are currently available to study the identity and function of the different cell populations, the signaling pathways, and the molecular mechanisms involved. Mouse models of acute injury represent a powerful tool to investigate many aspects of this process. Different commonly used techniques to induce acute muscle damage allow researchers to follow the regeneration process in vivo, from the very early stages to the end of the process. This protocol describes the steps from the intramuscular injection of snake venom-derived cardiotoxin (CTX), which induces myolysis and triggers the regeneration process, up to the analysis of tissue samples. Following CTX injection, mice can be sacrificed at different time points depending on experimental requirements, and the skeletal muscles can be dissected and processed for further analysis. Finally, we describe the staining protocol of tissue sections to perform morphological observations and basic quantitative analyses. This protocol allows for the study of acute skeletal muscle regeneration in vivo in a highly reproducible manner10.
All experiments were conducted in strict accordance with the institutional guidelines for animal research and approved by the Department of Public Health, Animal Health, Nutrition and Food Safety of the Italian Ministry of Health in accordance with the law on animal experimentation. Cervical dislocation procedures may vary from institution to institution based on IACUC or its equivalent requirements.
1. Cardiotoxin Injection in the Tibialis Anterior Muscle
2. Tibialis Anterior Isolation
Note: Muscles can be isolated at different time points after cardiotoxin injection according to experimental requirements.
3. Fresh Frozen Muscle Technique
4. Cryostat Sectioning of Frozen Muscles
5. Routine Histological Staining (Hematoxylin & Eosin Stains)
Note: Several histological stains can be performed on muscle sections according to the analysis. A routine histological stain for morphological and morphometric analysis is the Hematoxylin & Eosin (H&E) bichromic stain. The hematoxylin stains the nuclei a deep purple. Nuclear staining is counterstained with eosin (pink/red), which stains eosinophilic structures, such as the myofibers in the cytoplasm.
H&E staining allows for the evaluation of the morphology of the regeneration process at specific time points during skeletal muscle regeneration. Figure 3 shows the time course analysis performed on injured TA muscles of wild type mice. Muscles have been isolated at 3, 7, 15, and 30 days after CTX injection, as schematized in Figure 3A. Representative pictures of H&E-stained transverse sections show the dynamics of skeletal muscle repair over time (Figure 3B-E). At day 3 after injury, the structural architecture of the muscle is completely destroyed, and both degenerated myofibers (necrotic area) and mononucleated cells are clearly visible (Figure 3B). This heterogeneous group of cells mainly consists of transient amplifying satellite cells (myoblasts), inflammatory cells recruited from blood11, and interstitial and endothelial cells that participate in the regeneration process, which is triggered at the site of injury. In this context, new regenerating myofibers are generated by fusion and differentiation of myoblasts. The main feature of the regenerating area is the presence of small basophilic myofibers with centrally located nuclei and a dark-stained cytoplasm (Figure 3C). At this stage, inflammation is still visible, although it progressively decreases. The size of regenerating myofibers increases over time, giving rise to eosinophilic regenerated myofibers characterized by centrally located nuclei (Figure 3D, E). The regenerated myofibers are visible at later stages of regeneration and until the end of the process. The healthy myofibers appear highly organized and close to each other, with a pink cytoplasm and with the nuclei placed at the periphery of the fibers, under the sarcolemma. These myofibers are usually present far from the site of CTX injection and injury, and they more rarely represent areas where the regeneration is definitively complete. Indeed, regenerated fibers are characterized by the presence of centrally located nuclei that move to the periphery only several months after injury.
Digital images of the stained muscle sections are captured by adding the scale bars for spatial calibration, which is necessary to accurately measure the areas of interest by outlining the contours of the interested areas. The measurement of the myofiber cross-sectional area (CSA) is a reliable morphometric analysis, which is widely used to quantify the differences in the regeneration trend between different groups of mice. This analysis requires the measurement of areas of centrally nucleated myofibers, including at least 500 and up to 1,000 fibers per section. Both the average of the regenerating and regenerated myofiber areas and the Gaussian distribution of these areas are indicators of the regeneration process. Increased myofiber CSA is generally associated with an improved and/or accelerated regenerative response. On the contrary, failure of proper regeneration is associated with a decrease in CSA. Here, we reported the myofiber CSA analysis, indicated as both the average (Figure 3F) and distribution (Figure 3G) of myofiber CSA at different time points. The analysis highlights how the distribution of myofiber areas changes over time and how the CSA shifts towards larger-sized fibers as the process of regeneration proceeds.
Figure 1. Intramuscular Injection and Isolation of the Tibialis Muscle. A. Intramuscular injection of cardiotoxin in the Tibialis Anterior muscle. B. Removal of muscle fascia. The white arrow indicates the thin-tipped tweezers that pinch the muscle to remove the fascia. C. The top picture shows the anatomical position of the distal TA tendon. The bottom picture shows how to lift the TA and remove it while avoiding muscle damage. D. Left picture: the TA is lifted by pulling the distal tendon upward. The white arrow indicates the distal EDL tendon. Right picture: by holding the tendon with forceps, the top edge of the TA is cut off below the knee. The white arrow indicates the cutting site. Please click here to view a larger version of this figure.
Figure 2. Fresh Freezing Muscle and Cryostat Sectioning of Frozen Muscles. A. Technique of fresh muscle inclusion in tragacanth gum. The TA muscle is immersed in the gum from the tendon, with about 3/4 outside and maintained in a perpendicular position with respect to the cork. B. Representative images of the procedure for cryostat sectioning. The cork is placed in a small amount of freezing compound on the specimen stub. Please click here to view a larger version of this figure.
Figure 3. Time Course Analysis of Skeletal Muscle Regeneration. A. Experimental scheme of acute skeletal muscle injury. B-E. Representative pictures of Hematoxylin & Eosin stained sections of cardiotoxin (CTX)-treated muscles at indicated days after injury. B. The black continuous line (on the left side of the picture), encloses a couple of necrotic fibers, likely invaded by inflammatory cells. The dashed line (right side of the picture) marks an area of infiltrating mononucleated cells. C. A single immature myofiber with centrally located nucleus is indicated by the black circle. D-E. Large regenerated eosinophilic myofibers, with centrally located nuclei are marked by black circles. Scale bars represent 100 mm. F. Average of centrally nucleated myofiber size values in TA muscle sections. Values are mean ± SEM, 5 mice/group. G. Myofiber cross-sectional area (CSA) distribution at 6, 15, and 30 days after CTX injection. Values are mean ± SEM, 5 mice/group. Please click here to view a larger version of this figure.
Here, we describe a protocol to induce acute injury in skeletal muscle (i.e., the intramuscular injection of CTX). It is widely used as a powerful tool to study the dynamics of skeletal muscle regeneration in vivo. CTX injection induces the degeneration of muscle fibers, which is caused by the depolarization of the sarcolemma and the contraction of the fibers12, and triggers the cascade of events that leads to muscle regeneration. Skeletal muscles are dissected at desired time points after the injection and injury, according to experimental requirements, and used for subsequent histological analyses. The dissected muscles can either be frozen, after inclusion in cryo-protectant media, or included in paraffin. However, these procedures require a step of pre-fixation with paraformaldehyde, which can generate artifacts and can eventually affect the subsequent analyses. Freezing the tissue directly can prevent this problem. Of note, many primary antibodies work exclusively or more effectively on fresh frozen muscle sections13, which makes this procedure more reliable. The morphometric analysis is usually performed on time course experiments, which allow for the evaluation of differences in the regeneration processes between groups of mice with the same age and with specific genetic mutations and/or pharmacological treatments. Although the protocol of CTX-induced damage is highly reproducible per se, a possible limitation is due to the operator-dependent variability of CTX injection. To overcome this limitation, it is preferable that the entire time course experiment is performed by the same operator.
The extent of muscle regeneration can be quantified as percentage of healthy fibers, necrotic areas and inflammation, and regenerating and regenerated areas over the total area. However, this approach is mostly used when studying events of chronic damage, such as in dystrophic mdx mice, rather than in models of acute injury. Indeed, while dystrophic muscles are characterized by asynchronous events of degeneration and regeneration, acute injury is followed by well-defined and consequential events. One limitation of these analyses, which require an empirical identification of the morphological features described above, is that they are not completely unbiased. To support experimental conclusions, the morphological analysis should always be complemented with further analysis, such as immunofluorescence analysis of specific molecular markers, to support experimental conclusions. For this reason, it is preferred to use parallel analysis to unequivocally interpret the results. For instance, regenerating myofibers are positively stained for embryonic Myosin Heavy Chain (eMyHC) that is expressed specifically in newly formed myofibers. Thus, quantification of eMyHC-stained myofibers can be performed side-by-side with the morphological analysis.
The CSA analysis is a more reliable quantification and can be performed either on H&E-stained sections or on muscle sections stained with laminin, which marks the edge of the muscle fibers; quantification is performed using appropriate macros of ImageJ, as described above. In both cases, it is always necessary to first assess the quality of the sections and to exclude areas of tissue that appear deformed or curled.
Beside the morphological analyses of the tissues, H&E-stained sections allow for the identification of other specific features, such as the presence of fibrosis and/or fatty tissue. Indeed, fibrosis derives from the excessive accumulation of extracellular matrix that occurs either if the regeneration is impaired or in chronic diseases14. Indeed, extracellular matrix accumulation is visible as pale material deposited between the regenerated myofibers in H&E-histological staining. Multiple rounds of CTX injection can be used to mimic chronic disease in which the myofibers undergo waves of degeneration and regeneration and scar tissue accumulates aberrantly. However, more reliable protocols are available to induce muscle fibrosis15, and specific histological staining can be performed to identify and quantify these structures, such as Masson's Trichrome or Sirius Red staining. Formation of fatty tissue is clearly visible in H&E-stained sections as rounded white structures between the myofibers, giving an important indication of the presence of fatty tissue, which is quantified by Oil Red staining. Finally, skeletal muscle sections obtained following the protocol described can be used to perform immunofluorescence analysis using specific antibodies and protocols.
The authors have nothing to disclose.
We thank the Animal House and the Integrated Microscopy Facilities of IGB-CNR. This work has benefited from research funding from the European Community’s Seventh Framework Programme in the project ENDOSTEM (Activation of vasculature associated stem cells and muscle stem cells for the repair and maintenance of muscle tissue, grant agreement number 241440), the Italian Ministry of Education-University-Research (MIUR-PRIN2 010-2011) to G.M. and S.B. and PON Cluster IRMI to G.M., and the CARIPLO foundation to G.M. and S.B.
Cardiotoxin from Naja mossambica mossambica | SIGMA ALDRICH | C9759 | |
Syringe For Insulin BD Micro-Fine+ Needle 30 G X 8 mm – Da 0,3 ml | BD | 324826 | |
Tragacanth Gum | MP BIOMEDICALS,LLC | 104792 | |
2-Methylbutane (Isopentane) | SIGMA ALDRICH | 78-78-4. | |
OCT Killik Solution For Inclusion Cryostat | Bio-optica | 05-9801 | |
Feather Microtome Blade S35 | Bio-optica | 01-S35 | |
Glass Slide Superfrost Plus | Menzel-Gläser | 09-OPLUS | |
Dumon #5 Mirror Finish Forceps | 2BIOLOGICAL INSTRUMENTS | 11251-23 | |
Scissors Straight Sharp/Sharp | 2BIOLOGICAL INSTRUMENTS | 15024-10 | |
Scissors Noyes Straight | 2BIOLOGICAL INSTRUMENTS | 15012-12 | |
Fine Iris Scissors Straight Sharp/Sharp 10,5 Cm | 2BIOLOGICAL INSTRUMENTS | 14094-11 | |
Eukitt | Bio-optica | 09-00100 | |
Slide Coverslip | BIOSIGMA | VBS651 | |
Xylene | SIGMA ALDRICH | 214736 | |
Ethanol 100% | sigma-Aldrich | 02860-2.5L | |
Hematoxyline | J.T. BAKER | 3873 | |
Eosin | SIGMA ALDRICH | HT110116 | |
Cryostat | LEICA | CM3050 S |