The key steps of living anionic polymerization of phenyl glycidyl ether (PheGE) on methoxy-polyethylene glycol (mPEG-b-PPheGE) are described. The resulting block copolymer micelles (BCMs) were loaded with doxorubicin 14% (wt%) and sustained release of drug over 4 days under physiologically relevant conditions was obtained.
In this study, an amphiphilic copolymer that includes a core-forming block with phenyl groups was synthesized by living anionic polymerization of phenyl glycidyl ether (PheGE) on methoxy-polyethylene glycol (mPEG-b-PPheGE). Characterization of the copolymer revealed a narrow molecular distribution (PDI < 1.03) and confirmed the degree of polymerization of mPEG122–b-(PheGE)15. The critical micelle concentration of the copolymer was evaluated using an established fluorescence method with the aggregation behavior evaluated by dynamic light scattering and transmission electronic microscopy. The potential of the copolymer for use in drug delivery applications was evaluated in a preliminary manner including in vitro biocompatibility, loading and release of the hydrophobic anti-cancer drug doxorubicin (DOX). A stable micelle formulation of DOX was prepared with drug loading levels up to 14% (wt%), drug loading efficiencies > 60% (w/w) and sustained release of drug over 4 days under physiologically relevant conditions (acidic and neutral pH, presence of albumin). The high drug loading level and sustained release is attributed to stabilizing π-π interactions between DOX and the core-forming block of the micelles.
In aqueous media, amphiphilic block copolymers assemble to form nano-sized block copolymer micelles (BCMs) that consist of a hydrophobic core surrounded by a hydrophilic shell or corona. The micelle core can serve as a reservoir for the incorporation of hydrophobic drugs; while, the hydrophilic corona provides an interface between the core and the external medium. Poly(ethylene glycol) (PEG) and its derivatives are one of the most important classes of polymers and one of the most widely used in drug formulation.1-3 BCMs have proven to be a worthy drug delivery platform with several formulations relying on this technology now in late stage clinical development.4 Most commonly, the hydrophobic block of the copolymer is comprised of polycaprolactone, poly(D,L-lactide), poly(propylene oxide) or poly(β-benzyl-L-aspartate).5-9
Kataoka's group investigated spherical micelles formed from PEO-b-PBLA and poly(ethylene oxide)-b-(polyaspartic acid-conjugated doxorubicin) for delivery of doxorubicin (DOX).10,11 In their reports, they put forward that π-π interactions between the polymer-conjugated drug or PBLA and free DOX act to stabilize the micelle core resulting in increases in drug loading and retention. It is established that compatibility or interactions between a drug and the core-forming block are determinants of key performance related parameters.12 In addition to DOX, a number of cancer therapeutics include aromatic rings within their core structure (e.g., methotrexate, olaparib, SN-38).
As a result there is significant interest in synthesis of copolymers that include benzyl rings in their core-forming blocks. Anionic ring-opening polymerization of PEG and its derivatives enable control over molecular weight and result in materials of low polydispersity in good yield.13,14 Ethylene oxide with phenyl glycidyl ether (PheGE) or styrene oxide (SO) can be (co)polymerized to form block copolymers that form micelles for solubilization of hydrophobic drugs.15-18 The current report describes the necessary steps for living anionic polymerization of phenyl glycidyl ether monomer on mPEG-OH as macroinitiator (Figure 1). The resulting block copolymer and its aggregates are then characterized in terms of properties of relevance to use in drug delivery.
Figure 1. Schematic showing the nine key steps in the preparation of the mPEG-b-PPheGE copolymer. Please click here to view a larger version of this figure.
1. Preparation of the Reagents under Dry Conditions
2. Preparation of the Potassium Naphthalene
3. Materials and Necessary Precautions for Effective Living Anionic Polymerization
Figure 2. Assembly and key distillation/transfer steps. Please click here to view a larger version of this figure.
4. Description of the Key Steps of Living Anionic Polymerization: Distillation and Transfer
5. Characterization of the Copolymers
6. Procedure for Loading Doxorubicin into BCMs
7. Evaluation of Doxorubicin Loading in DOX-BCMs
8. Evaluation of In Vitro Release of DOX from DOX-BCMs
Figure 3. Illustration of the anionic polymerization of phenyl glycidyl ether on mPEG macroinitiator to produce mPEG-b-(PheGE)15 for preparation of block copolymer micelles for loading of doxorubicin. The schematic illustrates the deprotonation of the hydroxyl group of mPEG using naphthalene potassium as a radical-anion, followed by the polymerization of the phenyl glycidyl ether (PheGE) monomer. Representative transmission electron microscopy image (TEM) of the BCMs stained with uranyl acetate (1% w/v) and size distribution of the micelles as determined by dynamic light scattering (DLS). Please click here to view a larger version of this figure.
As shown in Figure 3, anionic polymerization of phenyl glycidyl ether on mPEG macroinitiator was used to prepare block copolymer micelles (DOX-mPEG-b-(PhGE)15 for entrapment of doxorubicin. A narrow molecular weight distribution for the mPEG-b-(PhGE)15 copolymer was confirmed by GPC (PDI=1.03) and the degree of polymerization was determined by 1H NMR analysis (Figure 4) [σ = 7.2 ppm (m, 2H meta, phenyl 2(=CH-)), σ = 6.8 ppm (d, 3H, 2 ortho and 1 para (-CH-), σ = 3.95 ppm (m, 2H, O-CH2-CH-)] with the methyl end group of the mPEG used as a reference peak (σ = 3.22 ppm (s, 3H).
Figure 4. Characterization and analysis. A) GPC analysis of mPEG and the copolymer in THF. B) 1H NMR spectra of mPEG5K (upper spectrum) and mPEG-b-(PheGE)15 (lower spectrum) in d6-DMSO. Please click here to view a larger version of this figure.
Table 1. Characteristics of the copolymer.
In aqueous media, amphiphilic block copolymers such as mPEG-b-(PheGE)15 assemble to form micelles that consist of a hydrophobic core surrounded by a hydrophilic shell. The CMC of the copolymer was measured using an established fluorescence method. The CMC of mPEG-b-(PheGE)15 was determined to be ~9 µg/ml (Figure 5A inset). Transmission electronic microscopy confirmed a spherical morphology for the copolymer aggregates and thus dynamic light scattering (Figure 3 and Table 2) was employed to assess the hydrodynamic diameter (Dh ~ 25 nm). As shown in the Figure 6-a, L929 mouse fibroblast cells were exposed to mPEG-b-(PhGE)15 BCMs and no cytotoxicity was observed following the 24 hr incubation period.
Figure 5. Fluorescence intensity and CMC characterization. A) Plot of the fluorescence intensity of DPH as a function of concentration of mPEG-b-(Phe)15 block copolymer. Inset shows the early stage of aggregation of the block copolymer at 0.1-10 µg/ml. B) Plot of CMC values obtained from the literature for a range of copolymers with pendant phenyl groups on the core-forming block. Red squares represent the calculated values for the Gibbs energy of micellization of the corresponding copolymers (± 0.5 kJ/mol).22,25-28 Please click here to view a larger version of this figure.
Table 2. Characterization of the BCMs prepared by the dialysis method.
Solubilization of drug in BCMs is influenced by the aqueous solubility of the drug as well as the propensity for interaction between the drug and itself and/or the core-forming block of the micelles. In its salt form, DOX is relatively soluble (~10 mg/ml) in water. Thus for loading into the BCMs, DOX was dissolved in acetonitrile and neutralized with TEA to obtain the free base (3 eq.). With a pKa of 8.5, DOX becomes relatively insoluble under basic conditions driving encapsulation in the BCMs with stabilization by π-π stacking interactions (mPEG-b-(PhGE)15). As described in the literature, similar loading capacities for DOX in DOX-mPEG-b-(PhGE)15 have been reported with an average value of 14% (w/w).21-24 After ultrafiltration, it was found that copolymer concentrations as low as 10 mg/ml successfully solubilized up to 1.6 mg DOX/ml. The drug loading efficiency was up to 52% (w/w) for the mPEG-b-(PhGE)15 BCMs (Table 2). The release profiles of DOX from the BCMs in different media were investigated (Figure 6c).
Figure 6. Cytotoxicity and drug release kinetics. A) Evaluation of the cytotoxicity in L929 mouse fibroblast cells of mPEG-b-(PheGE)15 copolymer micelles as determined using the MTS assay following a 24 hr incubation period (n = 3 individual experiments, S.D. < 10%). B) Normalized emission spectra of free DOX and DOX-loaded micelles in PBS, pH 7.4 at 10 µg/ml DOX concentration. The excitation wavelength is 480 nm and the emission spectrum is collected from 500-700 nm. C) Release profiles of DOX from the block mPEG-b-(PhGE)15 copolymer micelles (squares) in PBS 0.1 M pH 7.4, (circles) in PBS 0.1 M pH 7.4 containing BSA 50 mg/ml (in the bag) and (triangles) in acetate Na+ buffer 0.1 M pH 5.5 and (down triangles) free DOX (n=2) in PBS pH 7.4. (for each condition, n=3 individual experiments, S.D. < 10%). Please click here to view a larger version of this figure.
Due to the good control that anionic polymerization provides over molecular weight it is one of the most applied processes in the industry for the preparation of polymers based on oxirane monomers (PEG and PPG). Optimal and stringent conditions must be used for successful polymerization to be achieved. Rigorous purification of all reagents and appropriate apparatus are essential for the living character of the synthesis. Limitations of the current setup are mostly associated with the transfer technique that relies on cannulation. Using appropriate pressure, cannulation is a safe laboratory scale technique for the academic setting. Applying these precautions will provide better reproducibility and control during the polymerization process (low PDI). Also, these transfer and purification procedures can be used for the preparation of copolymers such as mPEG-b-PCL, mPEG-b-PLLA, and mPEG-b-PAGE.19,29 However, this convenient procedure may not be adequate for polymerization of some monomers that require more stringent conditions (e.g., styrene). Alternatively, the break-seal technique is usually preferred for anionic polymerization.30 To control these steps in industry, similar systems (stainless/glass) are connected to each other via hermetic valves.
For oxirane monomers, the general mechanism is a nucleophilic attack of the oxyanion (free ion or ion pair) on the oxirane ring, which leads to ring opening polymerization. However, dependent on the nature of substituted oxirane monomers, some monomers may not polymerize or they may not be polymerized to high molecular weight. This type of polymerization does not tolerate acidic or basic components, including the monomer itself, the solvent or other species that lead to termination reactions and / or chain transfer in the medium (loss of control of the reaction). To produce a PEGylated block copolymer bearing phenyl groups by anionic polymerization, alternatives to phenyl glycidyl ether monomer can be found: styrene, styrene oxide or allyl glycidyl ether followed by a radical Michael reaction of benzyl mercaptan are options. mPEG can be prepared by condensation of the ethylene oxide monomer and then polymerized under the same conditions as described in this paper, using a hydroxylated initiator (e.g., methanol). However, mPEG of varying molecular weights with low PDI is available commercially.
To avoid water residue, the macroinitiator (e.g., mPEG-OH) needs to be well dried by pre-drying in an oven, followed by the heat gun-drying procedure. The reactions can be performed in polar aprotic solvents, coordinating solvents, or in bulk. When the polymerization requires specific conditions, such as high temperature, solvents with a stronger polarity than THF must be used, such as DMSO, diglyme or HMPA. As described in the protocol (section 4), efficient distillation of DMSO and the monomer (over CaH2) is required. DMSO is hygroscopic and if the distillation is not well conducted, traces of water may inactivate the active species. Other solvents may be used but DMSO has a high solvating ability for cations, low solvating ability for anions and allows high temperature polymerization.31,32 DMSO is an excellent solvent for base catalyzed polymerization of epoxides and olefins with strong electron withdrawing substituents. Initiation of the polymerization can be achieved by in situ generation of potassium alkoxide initiators through titration of mPEG-OH with a dilute solution of potassium naphthalene.33 It is important to carefully prepare the solution of potassium naphthalene and to titrate the solution with acid prior to its use. Indeed, if the concentration of potassium naphthalene is under or overestimated, the macroinitiator may form aggregates or fail to completely activate the initiator and in turn the polymerization may be compromised. When the potassium naphthalene is added dropwise, the slow disappearance of color provides visual control over consumption of the base by the initiator. Under these conditions, the rapid proton exchange between the hydroxyl groups (dormant) and alkoxides (active) ensures a controlled polymerization of the monomer.13
The aggregation behavior of block copolymers of similar composition to mPEG122–b-(PhGE)15 have been investigated by several groups with reported CMC values ranging from 1 to 10 µg/ml. 25,27,28,34-36 CMC values for a specific copolymer can vary depending on the specific method employed for determination. In this study, a fluorescence-based method was employed with DPH chosen as the probe given that it only results in a fluorescence signal once incorporated in the BCMs (Figure 5A inset). Figure 5B includes the CMC values obtained for various block copolymers with pendant phenyl groups. As shown, the CMC values of the copolymers vary depending on the nature of the polymer backbone bearing the phenyl groups and degree of polymerization.25,27,28,34-36 The exchange of copolymer chains between the micelles and the external medium depends on the state of the micelle core as well as the Flory-Huggins interaction parameter between the two blocks and the solvent. The glass transition temperature (Tg) of bulk PPheGE homopolymer is known to be lower than that of bulk PS.37 Due to the glassy nature of PS, copolymers with a high degree of polymerization of PS (n>35) possess a glassy core at RT (Tg~80 °C).38
Thermodynamically, two main approaches have been put forward to describe the micellization process, namely, the phase separation model (phase separation at the CMC), and the mass-action model (association-dissociation equilibrium micelle/unimers).39 According to both approaches, the standard Gibbs energy change (ΔG◦) for the transfer of 1 mol of amphiphile from solution to the micellar phase (ΔG◦ free energy of micellization), in the absence of electrostatic interactions, is given by ΔG◦ = R T ln(CMC).39 As shown in Figure 5B, the values for CMC and ΔG◦ are in agreement with the values obtained for copolymers that are similar in composition (in terms of total copolymer MW and ratio of hydrophobic to hydrophilic block length) to mPEG-b-(PhGE)15. As shown in Table 1, DSC analysis of the mPEG-b-(PhGE)15 copolymer bulk material confirmed a single Tm at 51 °C which is attributed to the hydrophilic block and is depressed relative to mPEG alone (60 °C). In solution, it is presumed that the cores of mPEG-b-PS copolymer micelles, with polystyrene blocks of similar length to that of PhGE in mPEG-b-(PhGE)15, begin to become mobile at physiological temperature (i.e., 37 °C). 38,40 Therefore, the mPEG-b-(PhGE)15 BCMs likely possess a relatively mobile core which enables local movement at room and physiological temperatures.
In this study dialysis and ultrafiltration were used as a convenient means to remove free drug and to increase the concentration of the drug/copolymer for subsequent in vivo applications. Alternately, freeze drying may be employed to concentrate the formulation; however, this requires optimization including possible addition of stabilizers (e.g., PEG, dextrose) to improve wettability for reconstitution. The resulting DOX-mPEG-b-(PhGE)15 BCMs showed similar sustained release profiles (PBS 7.4) to BCM systems developed by Kataoka and coworkers.21 In PBS at pH 7.4, less than 10% of the total drug was released within six hours whereas more than 95% of the free DOX is released from the dialysis bag within that same period of time. Sustained release at neutral pH indicates good stability of the formulation over the four-day period.
Human blood serum is comprised of approximately 7% protein, two-thirds of which is albumin.41 Therefore, in order to simulate the in vivo conditions drug release is commonly evaluated in buffer solutions containing physiologically relevant concentrations of this protein. In the present study, BSA was included in the dialysis bag at a concentration of 50 mg/ml. In the presence of albumin, the release of DOX from the BCMs increased to about 30% following 4 days of incubation at 37 °C. Release of DOX from the BCMs in buffer at pH 5.5 confirmed that protonation of DOX under these conditions results in an increase in drug release after 72 hours and this increases up to 60% after 4 days. Overall, the resulting DOX-BCMs have shown promising results in vitro, similar or equivalent to other BCM formulations of DOX presented in the literature, and thus encourage additional evaluation in vivo.
The authors have nothing to disclose.
CA acknowledges a Discovery grant from the Natural Sciences and Engineering Research Council of Canada. CA acknowledges a Chair in Pharmaceutics and Drug Delivery from GSK. The authors declare no competing financial interest.
DMEM/HAMF12 | Gibco, Life Technologies | 12500 | Supplemented with 10%FBS. Warm in 37 °C water bath |
|||||
Trypsin-EDTA(0.25%) | Sigma-Aldrich | T4049 | Warm in 37 °C water bath | |||||
Fetal bovine serum (FBS) | Sigma-Aldrich | F1051 | Canada origin | |||||
MDA-MB-468 cell line | ATCC | HTB-132 | ||||||
MTS tetrazolium reagent | PROMEGA | G111B | ||||||
Phenazine ethosulfate (PES) | Sigma-Aldrich | P4544 | >95% | |||||
mPEG5K (Mn 5400 g/mol) | Sigma-Aldrich | 81323 | PDI=1.02 | |||||
Dimethylsolfoxide (DMSO) | Sigma-Aldrich | D4540 | >99.5% | |||||
Naphthalene | Sigma-Aldrich | 147141 | >99% | |||||
Phenyl glycidyl ether | Sigma-Aldrich | A32608 | >85% | |||||
Benzophenone | Sigma-Aldrich | 427551 | >99% | |||||
Potassium | Sigma-Aldrich | 451096 | >98% | |||||
Tetrahydrofuran | Caledon Laboratory Chemicals | 8900 1 | ACS | |||||
Hexane | Caledon Laboratory Chemicals | 5500 1 | ACS | |||||
Calcium hydride (CaH2) | ACP | C-0460 | >99.5% | |||||
Diethyl Ether | Caledon Laboratory Chemicals | 1/10/4800 | ACS | |||||
Microplate reader | BioTek Instruments | |||||||
Differential scanning calorimetry (DSC) | TA Instruments Inc | DSC Q100 | ||||||
Gel permeation chromatography (GPC) | Waters | 2695 separation moldule / 2414 detector | 2 Columns: Agilent Plgel 5µm Mixed-D | |||||
NMR spectroscopy | Varian Mercury 400MHz | |||||||
Chloroform-d | Sigma-Aldrich | 151858 | 99.96% | |||||
DMSO-d | Sigma-Aldrich | 156914 | 99.96% | |||||
Vaccum pump | Gardner Denver Welch Vacuum Tech, Inc. | Ultimate pressure 1.10-4 torr | ||||||
Drierit with indicator, 8 mesh | Sigma-Aldrich | 238988 | Regenerated at 230°C for 2 hrs |