Summary

在活斑马鱼胚胎成像的亚细胞结构

Published: April 02, 2016
doi:

Summary

Imaging the dynamic behavior of organelles and other subcellular structures in vivo can shed light on their function in physiological and disease conditions. Here, we present methods for genetically tagging two organelles, centrosomes and mitochondria, and imaging their dynamics in living zebrafish embryos using wide-field and confocal microscopy.

Abstract

In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

Introduction

体内成像提供在最生理上下文细胞行为的直接可视化。斑马鱼的胚胎,其快速的外部发展和丰富的允许荧光标记的遗传工具阵列的透明度,都促使越来越多地使用在体内显微镜阐明关键发育事件的动态。在斑马鱼神经系统发育的成像研究,例如大大扩展了我们的神经祖细胞的行为和他们的后代,包括其后续迁移,分化和电路集成1-8命运的知识。

舞台现在设置调查亚细胞动力学这些细胞行为背后。事实上,斑马鱼已经被利用作为用于体内细胞生物学的工具。它现在是可能的可视化线粒体9-11,中心体2,8,12-14,高尔基15中,微管4和肌动蛋白16细胞骨架,内涵体17和顶膜的组件复杂1,18,体内斑马鱼胚胎其他亚细胞结构中。到目前为止,大部分的所谓对这些细胞器的功能来自于培养细胞研究他们的行为。而体外研究已经取得了巨大的洞察细胞生物学,细胞培养并不完全代表的体内情况的复杂性和因此不一定反映功能和体内亚细胞器的动力学。斑马鱼的胚胎提供体内替代一个可行的检查亚动态。

作为脊椎动物,斑马鱼拥有的同源那些在哺乳动物中发现许多器官系统( 例如,视网膜神经)。此外,斑马鱼的胚胎被越来越多地用于人类疾病19,20建模</s向上>,包括与中心体功能( 例如,畸形21和勒伯尔先天性黑蒙22)和线粒体功能( 例如,帕金森氏病23,τ蛋白病10,24和巴特综合征25), 在体内在细胞和亚细胞水平的成像在这些情况下,将允许更好地了解细胞生物学的这些病理状态的根本。

这里描述的方法的总的目标是提供一种全面的指导来调查在使用体内光学显微镜斑马鱼胚胎细胞器和其它亚细胞结构。 参与体内可视化和跟踪亚细胞结构,整个工作流程描述-遗传标记的方法,以产生瞬时表达和稳定的转基因鱼,最后采用宽视场和共聚焦显微镜成像。虽然这些PROC的edures用于由众多斑马鱼实验室,中所述的协议进行了优化和简化调查亚细胞结构的动态。此处所描述的工作的两个特定方面值得提及:首先,使用在多个配置的GAL4-UAS表达系统在特定细胞类型的基因标签的细胞器。第二,宽视场和共聚焦显微镜的体内直接比较对图像亚细胞结构。

目前的策略,以转基因标签的细胞器和其他亚细胞结构的斑马鱼要么利用皑皑的mRNA 1,4,8或基于DNA的结构,其中子元件直接驱动融合蛋白9,14,15。 体外转录加帽的RNA结果的表达快速和广泛的表达,这不是组织特异性但是。此外,表达水平降低随着时间的推移加帽的RNA稀释或退化。因此,使用RNA的基于构造来检查在发育后期阶段的细胞器动力学是有限的(通常为3天受精后)。

这些限制可通过使用DNA构建,其中表达的空间和时间控制由特定的启动子元件决定来克服。当基于DNA构建中,以转基因表达水平的GAL4-UAS系统显著改善的上下文被用于观察26,27。在此二分表达系统,细胞类型特异性启动子元件驱动的转录激活的Gal4的表达,而报道基因被克隆的Gal4的结合上游激活序列(UAS)的下游。由UAS记者用适当的Gal4的驱动相结合,表达可以被限制到特定的细胞类型,绕过需要每一个特定的表达模式所需时间来克隆的报告基因的不同启动子的后面。此外,多个UAS报告基因的表达可以是由一个单一的Gal4的激活驱动。与GAL4-UAS系统,从而为亚细胞标记的一种多功能灵活的遗传方式。

宽视场和共聚焦显微镜是大多数实验室的工作母机。宽视场系统通常使用弧光灯作为光源,并使用被放置在光路的端部的敏感照相机检测所发射的光。此成像模态典型地限制为薄的样品作为失焦光掩盖较厚样品在焦信息。共焦显微镜之处在于它们是建立有利于从焦平面比那些源于失焦( “光学切片”)28日发起信号,宽领域的系统有所不同。以实现光学切片的针孔被放置在发射路径中的共轭位置以所述点光源。激光器被用作光源和信号与光电倍增管(PMT)来检测。实际上,激光束在样品刷卡逐点和在各点(像素)的荧光发射由光电倍增管检测到。

在这里,我们的图像中同时使用宽视场和共聚焦显微镜以提供镜方式的直接比较活的斑马鱼胚胎非常相同的亚细胞结构。提供这种比较的基础的目的是提供选择适合手边的特定问题的最合适的显微技术的指导方针。

使用这里介绍我们证明线粒体和中心体的GAL4-UAS的遗传标记的方法。这些细胞器是使用宽视场和共聚焦显微镜来证明每个成像模态的适用性在不同细胞类型中的肌肉细胞的神经系统和成像。这里描述的方法可以容易地适于在活斑马鱼胚胎调查其他细胞器和亚细胞结构。

Protocol

所有的动物实验均按照上巴伐利亚(德国慕尼黑)政府的地方性法规执行。 1.标签细胞器和其他亚细胞结构 注:此处的基因记者构造了荧光标记中心体,线粒体和细胞膜中描述。 使用传统的克隆方法29来产生荧光标记中心体和线粒体融合蛋白。克隆在帧斑马鱼centrin4(cetn4)的用荧光蛋白2(FP)的编码序列,如黄色荧?…

Representative Results

这里使用宽视场和共聚焦显微镜图像线粒体和在活斑马鱼胚胎中心体的直接比较和对比。这取决于细胞器动力学是细胞的位置要被检查和特定的亚细胞事件的固有频率,通常无论是宽视场或共聚焦显微镜是更好的选择。我们在位于胚胎的表面上的RB的神经元和在位于更深的视网膜细胞成像的细胞器。 RB神经元与其二维几何在一起的表观位置使它们的良好候选用于通过两个?…

Discussion

在这里,我们证明了GAL4-UAS表达系统的通用性,以荧光标记的线粒体,中心体和体内在斑马鱼胚胎特定细胞类型的细胞膜。该标签其他细胞器或亚细胞结构的许多荧光融合蛋白可以在出版的文献中找到,并且可以从相应的实验室,商业来源或非商业质粒保藏( 例如,Addgene)获得。设计一个新的荧光融合蛋白,几个参数需要考虑,包括FP使用哪个以及是否在感兴趣蛋白质的氨基或羧基?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

P.E. is supported by the Deutsche Forschungsgemeinschaft (DFG) Research Training Group 1373 and the Graduate School of the Technische Universität München (TUM-GS). G.P. was supported by TUM-GS. L.T. is supported by an EMBO fellowship (EMBO ALTF 108-2013). D.P.’s work on zebrafish was supported by the DFG through the Sonderforschungsbereich “Molecular Mechanisms of Neurodegeneration” (SFB 596); the Center for Integrated Protein Sciences (Munich) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 200611 (MEMOSAD). He is currently a New York Stem Cell Foundation-Druckenmiller Fellow and was supported by a fellowship from the German Academy of Sciences Leopoldina. L.G. is supported by funding from the DFG through SFB 870 “Assembly and Function of Neuronal Circuits”, Project A11.

We are grateful to Kristina Wullimann for maintaining our fish facility, Yvonne Hufnagel for technical support and Thomas Misgeld for comments on the manuscript. We are grateful to R. Köster (Technische Universität Braunschweig) for providing the M1 Medusa vector (pSKmemmRFP:5xUAS:H2B-CFP:5xUAS:Centrin2-YFP) from which we cloned out Centrin-YFP and S.C. Suzuki and T. Yoshimatsu (University of Washington) for providing the 14xUAS:MA-cerulean cassette which we used to generate the reporter construct to make CentrinFish. We further thank S.C. Suzuki and T. Yoshimatsu (University of Washington) for the Otx2:Gal4 transgenic line, A. Sagasti for the Sensory:Gal4-VP16 construct (UCLA) and M. Nonet (Washington University in St. Louis) for the pCold Heart Tol2 vector. We acknowledge Bettina Schmid, Alexander Hruscha and Christian Haass (German Center for Neurodegenerative Diseases Munich – DZNE) for contributing to the development of MitoFish.

Materials

Agarose (2-hydroxyethylagarose) Sigma-Aldrich A4018-10G Low-gelling temperature Type VII
Block heater Eppendorf Thermomixer compact
Ca(NO3)2 Calcium nitrate hydrate, 99.996%  Aldrich 202967-50g To prepare 30x Danieau's
CCD camera Qimaging Retiga Exi Fast 1394
Ceramic Coated Dumont #5 Forceps Dumont – Fine Science Tools 11252-50 #5 Forceps
Confocal laser-scanning microscope Olympus FV1000 Fluoview
Culture dish heater Warner Instrument Corporation DH-35 Heating ring
Ethyl 3-aminobenzoate methanesulfate salt Fluka Analytical A5040-100G Tricaine (anesthetic)
Fluorescence dissecting microscope Leica M205 FA
GeneClean kit MP Biomedicals 111001200
Glass Bottom Culture Dishes MatTek Corporation P35G-0-14-C 35mm petri dish, 14mm microwell, No. 0 coverglass
Glass needles World Precision Instruments Inc.  TW100F-4 For microinjections
HEPES Sigma H3375-250g To prepare 30x Danieau's
High vacuum grease Dow Corning  DCC000001242 150g Silicon dioxide grease
Incubator Thermo Scientific Heraeus To maintain zebrafish embryos at 28.5⁰ C
KCl 99% Sigma-Aldrich S7643-5kg To prepare 30x Danieau's
MgSO4.7H2O   Magnesium sulfate heptahydrate 98+% A.C.S reagent Sigma-Aldrich 230291-500g To prepare 30x Danieau's
Microinjector  Eppendorf FemtoJet
Microloader tips Eppendorf 930001007 0.5-20uL
Micromanipulator Maerzhaeuser Wetzlar MM33 Rechts/00-42-101-0000/M3301R
Micropipette holder Intracel P/N 50-00XX-130-1
mMESSAGE mMACHINE SP6 Transcription Kit Ambion AM1340 To transcribe PCS-Transposase
NaCl BioXtra >99.5% Sigma-Aldrich P9541-1kg To prepare 30x Danieau's
Nanophotometer To measure DNA/RNA concentration
Needle puller Sutter Instrument P-1000 Flaming/Brown
NIR Apo 40x/0.80W  Nikon Water-dipping-cone objective
N-Phenylthiourea Grade I, approx. 98% Sigma P7629-10G PTU (prevents pigmentation)
Petri dishes Sarstedt AG  821472 92 x 16mm 
Plastic molds  Adaptive Science Tools TU-1 For microinjections
Plexiglas cover-with a hole Custom-made The hole in the Plexiglas cover should be 3 mm larger than the diameter of the water-dipping-cone objective
Tea-strainer (Plastic) To collect zebrafish eggs
Temperature controller Warner Instrument Corporation TC-344B Dual Automatic Temperature Controller
Transfer pipettes Sarstedt AG  86.1171 3.5mL plastic transfer pipettes
UMPlanFI 100x/1.00W Olympus Water-dipping-cone objective
UMPlanFLN 20x/0.50W  Olympus Water-dipping-cone objective
Widefield microscope Olympus BX51WI
PTU (50x Stock) Dissolve 76 mg PTU in 50 ml distilled water
Stir vigorously at room temperature 
Store at -20 oC in 1 ml aliquots
Use at 1x working solution
Tricaine (20x Stock) Dissolve 200 mg Tricaine in 48 ml distilled water
Add 2 ml 1M Tris base (pH9)
Adjust to pH 7 
Store at -20 oC in 1 ml aliquots
Use at 1x working solution
Danieau's Solution (30x Stock) 1740 mM  NaCl 
<21 mM      KCl 
12 mM      MgSO4.7H2
18 mM      Ca (NO3)2
150 mM    HEPES buffer 
Distilled water upto 1 L 
Store at 4 o
Use at 0.3x working solution

References

  1. Alexandre, P., Reugels, A. M., Barker, D., Blanc, E., Clarke, J. D. Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat Neurosci. 13 (6), 673-679 (2010).
  2. Distel, M., Hocking, J. C., Volkmann, K., Koster, R. W. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J Cell Biol. 191 (4), 875-890 (2010).
  3. Godinho, L., et al. Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron. 56 (4), 597-603 (2007).
  4. Norden, C., Young, S., Link, B. A., Harris, W. A. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell. 138 (6), 1195-1208 (2009).
  5. Godinho, L., et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development. 132 (22), 5069-5079 (2005).
  6. Mumm, J. S., et al. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron. 52 (4), 609-621 (2006).
  7. Sagasti, A., Guido, M. R., Raible, D. W., Schier, A. F. Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors. Current biology : CB. 15 (9), 804-814 (2005).
  8. Zolessi, F. R., Poggi, L., Wilkinson, C. J., Chien, C. B., Harris, W. A. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev. 1, 2 (2006).
  9. Kim, M. J., Kang, K. H., Kim, C. H., Choi, S. Y. Real-time imaging of mitochondria in transgenic zebrafish expressing mitochondrially targeted GFP. Biotechniques. 45 (3), 331-334 (2008).
  10. Plucinska, G., et al. In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci. 32 (46), 16203-16212 (2012).
  11. O’Donnell, K. C., Vargas, M. E., Sagasti, A. WldS and PGC-1alpha regulate mitochondrial transport and oxidation state after axonal injury. J Neurosci. 33 (37), 14778-14790 (2013).
  12. Engerer, P., Yoshimatsu, T., Suzuki, S. C., Godinho, L. CentrinFish permit the visualization of centrosome dynamics in a cellular context in vivo. Zebrafish. 11 (6), 586-587 (2014).
  13. Wang, K., et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat Methods. 11 (6), 625-628 (2014).
  14. Randlett, O., Poggi, L., Zolessi, F. R., Harris, W. A. The oriented emergence of axons from retinal ganglion cells is directed by laminin contact in vivo. Neuron. 70 (2), 266-280 (2011).
  15. Tanabe, K., et al. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus. J Neurosci. 30 (50), 16983-16992 (2010).
  16. Hocking, J. C., Distel, M., Koster, R. W. Studying cellular and subcellular dynamics in the developing zebrafish nervous system. Exp Neurol. 242, 1-10 (2013).
  17. Clark, B. S., Winter, M., Cohen, A. R., Link, B. A. Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn. 240 (11), 2452-2465 (2011).
  18. Paolini, A., et al. Asymmetric inheritance of the apical domain and self-renewal of retinal ganglion cell progenitors depend on Anillin function. Development. 142 (5), 832-839 (2015).
  19. Santoriello, C., Zon, L. I. Hooked! Modeling human disease in zebrafish. The Journal of clinical investigation. 122 (7), 2337-2343 (2012).
  20. Steele, S. L., Prykhozhij, S. V., Berman, J. N. Zebrafish as a model system for mitochondrial biology and diseases. Translational research : the journal of laboratory and clinical medicine. 163 (2), 79-98 (2014).
  21. Novorol, C., et al. Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression. Open biology. 3 (10), 130065 (2013).
  22. Baye, L. M., et al. The N-terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness. Human molecular genetics. 20 (8), 1467-1477 (2011).
  23. Flinn, L. J., et al. TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Annals of neurology. 74 (6), 837-847 (2013).
  24. Paquet, D., et al. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. The Journal of clinical investigation. 119 (5), 1382-1395 (2009).
  25. Khuchua, Z., Yue, Z., Batts, L., Strauss, A. W. A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function. Circulation research. 99 (2), 201-208 (2006).
  26. Scheer, N., Campos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mechanisms of development. 80 (2), 153-158 (1999).
  27. Koster, R. W., Fraser, S. E. Tracing transgene expression in living zebrafish embryos. Dev Biol. 233 (2), 329-346 (2001).
  28. Conchello, J. A., Lichtman, J. W. Optical sectioning microscopy. Nat Methods. 2 (12), 920-931 (2005).
  29. Sambrook, J., Russell, D. . Molecular Cloning: A Laboratory Manual. , (2001).
  30. Distel, M., Wullimann, M. F., Koster, R. W. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A. 106 (32), 13365-13370 (2009).
  31. Skene, J. H., Virag, I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol. 108 (2), 613-624 (1989).
  32. Zuber, M. X., Strittmatter, S. M., Fishman, M. C. A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43. Nature. 341 (6240), 345-348 (1989).
  33. Asakawa, K., et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A. 105 (4), 1255-1260 (2008).
  34. Godinho, L. Injecting zebrafish with DNA or RNA constructs encoding fluorescent protein reporters. Cold Spring Harb Protoc. 2011 (7), 871-874 (2011).
  35. Palanca, A. M., Sagasti, A. Optogenetic activation of zebrafish somatosensory neurons using ChEF-tdTomato. J Vis Exp. (71), e50184 (2013).
  36. Dean, D. A., Gasiorowski, J. Z. Preparing injection pipettes on a flaming/brown pipette puller. Cold Spring Harb Protoc. 2011 (3), prot5586 (2011).
  37. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn. 203 (3), 253-310 (1995).
  38. Ren, J. Q., McCarthy, W. R., Zhang, H. W., Adolph, A. R., Li, L. Behavioral visual responses of wild-type and hypopigmented zebrafish. Vision Research. 42 (3), 293-299 (2002).
  39. Kawakami, K. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 8, S7 (2007).
  40. Kwan, K. M., et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 236 (11), 3088-3099 (2007).
  41. Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J., Tsai, H. J. Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn. 228 (1), 30-40 (2003).
  42. Davidson, A. E., et al. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol. 263 (2), 191-202 (2003).
  43. Kawakami, K., et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell. 7 (1), 133-144 (2004).
  44. Urasaki, A., Asakawa, K., Kawakami, K. Efficient transposition of the Tol2 transposable element from a single-copy donor in zebrafish. Proc Natl Acad Sci U S A. 105 (50), 19827-19832 (2008).
  45. Westerfield, M. . The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). , (2007).
  46. Wilkinson, R. N., Elworthy, S., Ingham, P. W., van Eeden, F. J. A method for high-throughput PCR-based genotyping of larval zebrafish tail biopsies. Biotechniques. 55 (6), 314-316 (2013).
  47. Carter, K. M., Woodley, C. M., Brown, R. S. A review of tricaine methanesulfonate for anesthesia of fish. Rev Fish Biol Fisher. 21 (1), 51-59 (2011).
  48. Edelstein, A., Amodaj, N., Hoover, K., Vale, R., Stuurman, N. Computer control of microscopes using microManager. Curr Protoc Mol Biol. , 14.20 (2010).
  49. Snapp, E. L. Design and Use of Fluorescent Fusion Proteins in Cell Biology. Curr Protoc Cell Biol. , 21.4 (2005).
  50. Snapp, E. L. Fluorescent proteins: a cell biologist’s user guide. Trends in cell biology. 19 (11), 649-655 (2009).
  51. Costantini, L. M., Snapp, E. L. Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA and cell biology. 32 (11), 622-627 (2013).
  52. Provost, E., Rhee, J., Leach, S. D. Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis. 45 (10), 625-629 (2007).
  53. Kim, J. H., et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 6 (4), e18556 (2011).
  54. Akitake, C. M., Macurak, M., Halpern, M. E., Goll, M. G. Transgenerational analysis of transcriptional silencing in zebrafish. Dev Biol. 352 (2), 191-201 (2011).
  55. Shaner, N. C., Steinbach, P. A., Tsien, R. Y. A guide to choosing fluorescent proteins. Nat Methods. 2 (12), 905-909 (2005).
  56. Katayama, H., Yamamoto, A., Mizushima, N., Yoshimori, T., Miyawaki, A. GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct. 33 (1), 1-12 (2008).
  57. Shaner, N. C., et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods. 5 (6), 545-551 (2008).
  58. Marinkovic, P., et al. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 109 (11), 4296-4301 (2012).
  59. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods. 2 (12), 932-940 (2005).
  60. Keller, P. J., Ahrens, M. B. Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron. 85 (3), 462-483 (2015).
  61. Keller, P. J., Schmidt, A. D., Wittbrodt, J., Stelzer, E. H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science. 322 (5904), 1065-1069 (2008).
  62. Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M., Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods. 8 (9), 757-760 (2011).
  63. Tomer, R., Khairy, K., Amat, F., Keller, P. J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods. 9 (7), 755-763 (2012).
  64. Chen, B. C., et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 346 (6208), 1257998 (2014).

Play Video

Cite This Article
Engerer, P., Plucinska, G., Thong, R., Trovò, L., Paquet, D., Godinho, L. Imaging Subcellular Structures in the Living Zebrafish Embryo. J. Vis. Exp. (110), e53456, doi:10.3791/53456 (2016).

View Video