Imaging the dynamic behavior of organelles and other subcellular structures in vivo can shed light on their function in physiological and disease conditions. Here, we present methods for genetically tagging two organelles, centrosomes and mitochondria, and imaging their dynamics in living zebrafish embryos using wide-field and confocal microscopy.
In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.
In vivo imaging provides direct visualization of cellular behaviors in the most physiological context. The transparency of zebrafish embryos, their rapid and external development and a rich array of genetic tools that permit fluorescent labeling have all contributed to the growing use of in vivo microscopy to elucidate the dynamics of key developmental events. Imaging studies of nervous system development in zebrafish have for example greatly expanded our knowledge of the behavior of neural progenitor cells and the fate of their progeny including their subsequent migration, differentiation and circuit integration1-8.
The stage is now set to investigate the subcellular dynamics underlying these cellular behaviors. Indeed, zebrafish are already being exploited as tools for in vivo cell biology. It is now possible to visualize mitochondria9-11, centrosomes2,8,12-14, Golgi15, the microtubule4 and actin16 cytoskeleton, endosomes17 and components of the apical membrane complex1,18, among other subcellular structures in zebrafish embryos in vivo. So far, much of what is known about the function of these organelles comes from studying their behavior in cultured cells. While in vitro studies have yielded tremendous insight into cell biology, cells in culture do not fully represent the complexity of the in vivo situation and therefore do not necessarily reflect the function and dynamics of subcellular organelles in vivo. Zebrafish embryos offer a viable in vivo alternative to examining subcellular dynamics.
As vertebrates, zebrafish possess many organ systems (e.g., neural retina) that are homologous to those found in mammalian species. Additionally, zebrafish embryos are increasingly being used to model human diseases19,20, including those related to centrosomal function (e.g., microcephaly21 and Leber's congenital amaurosis22) and to mitochondrial function (e.g., Parkinson's disease23, tauopathies10,24 and Barth syndrome25). In vivo imaging at the cellular and subcellular level in these instances will permit a better understanding of the cell biology underlying these pathological states.
The overall goal of the methods described here is to provide a comprehensive guide to investigate organelles and other subcellular structures in zebrafish embryos using in vivo light microscopy. The entire work-flow involved in visualizing and tracking subcellular structures in vivo is described – from genetic labeling approaches, to generating transiently expressing and stable transgenic fish, and finally to imaging using wide-field and confocal microscopy. While each of these procedures is used by numerous zebrafish laboratories, the protocols described are optimized and streamlined for investigating the dynamics of subcellular structures. Two specific aspects of the work described here warrant mention: First, the use of the Gal4-UAS expression system in multiple configurations to genetically label organelles in specific cell-types. Second, a direct comparison of wide-field and confocal microscopy to image subcellular structures in vivo.
Current strategies to genetically label organelles and other subcellular structures in zebrafish either make use of capped mRNA1,4,8 or DNA based constructs where promoter elements directly drive the expression of fusion proteins9,14,15. In vitro transcribed capped RNA results in rapid and broad expression, that is not tissue-specific however. Additionally, expression levels diminish over time as the capped RNA is diluted or degraded. Thus the use of RNA based constructs to examine organelle dynamics at later stages in development is limited (usually up to 3 days post-fertilization).
These limitations can be overcome by using DNA constructs, where spatial and temporal control of expression is determined by specific promoter elements. When DNA based constructs are used in the context of the Gal4-UAS system significant improvements to transgene expression levels are observed26,27. In this bipartite expression system, cell-type specific promoter elements drive the expression of a transcriptional activator Gal4, while reporter genes are cloned downstream of the Gal4-binding upstream activating sequence (UAS). By combining UAS reporters with appropriate Gal4 drivers, expression can be restricted to specific cell-types, circumventing the need to clone reporter genes behind different promoters every time a specific expression pattern is desired. Furthermore, the expression of multiple UAS reporter genes can be driven by a single Gal4 activator. The Gal4-UAS system thus provides a versatile and flexible genetic approach for subcellular labeling.
Wide-field and confocal microscopes are the workhorses of most laboratories. Wide-field systems typically use an arc lamp as a light source and detect the emitted light with a sensitive camera that is placed at the end of the light path. This imaging modality is typically restricted to thin samples as out-of focus light obscures in-focus information in thicker samples. Confocal microscopes differ from wide-field systems in that they are built to favor signals that originate from the focal plane over those that originate out of focus (i.e., "optical sectioning")28. To achieve optical sectioning a pinhole is placed in the emission path in a conjugate position to the point light source. Lasers are used as light sources and signals are detected with photomultiplier tubes (PMTs). Practically, a laser beam is swiped over the sample point-by-point and the fluorescence emission at each spot (pixel) is detected by the PMT.
Here we image the very same subcellular structures in living zebrafish embryos using both wide-field and confocal microscopy to provide a direct comparison of both microscopy modalities. The underlying aim of providing such comparisons is to offer guidelines for choosing the most appropriate microscopy technique for the specific question at hand.
Using the approaches described here we demonstrate Gal4-UAS based genetic labeling of mitochondria and centrosomes. These organelles are imaged in different cell-types of the nervous system and in muscle cells using wide-field and confocal microscopy to demonstrate the suitability of each imaging modality. The methods described here can easily be adapted for investigating other organelles and subcellular structures in the living zebrafish embryo.
All animal experiments were performed in accordance with local regulations of the government of Upper Bavaria (Munich, Germany).
1. Labeling Organelles and Other Subcellular Structures
NOTE: Here genetic reporter constructs that fluorescently tag centrosomes, mitochondria and cell membranes are described.
Figure 1. Strategies to co-express fusion proteins using the Gal4-UAS system.
Co-expression of multiple fusion proteins can be achieved by using UAS reporter cassettes in various configurations: (A) multiple, separate UAS-driven constructs, (B) multiple UAS cassettes on a single construct or (C) a bidirectional UAS cassette on a single construct. Please click here to view a larger version of this figure.
2. Generate Transiently Expressing Fish
NOTE: The following is an adaptation of previously published protocols34,35. A basic injection setup should include a stereomicroscope with a magnification range up to 12x, a micromanipulator with a micropipette holder and a source of air pressure. Prepare 2.1-2.5 ahead of time:
3. Generate Stable Transgenic Lines
NOTE: Stable transgenic lines can be efficiently generated using the Tol2 transposon system. A Tol2 transposon vector containing the transgene of interest is co-injected along with mRNA encoding the transposase enzyme into fertilized eggs at the one-cell stage. Transposase protein derived from the injected mRNA catalyzes the excision of the transgene cassette from the transposon vector and its integration into the genome39.
4. Prepare Embryos for Imaging on an Upright Microscope
NOTE: The procedures described here have been optimized for imaging on upright microscopes with long-working distance water-dipping-cone objectives.
5. Imaging Cellular and Subcellular Structures using Wide-field or Confocal Microscopy
NOTE: Wide-field microscopy and point-scanning confocal microscopy are the most widely used modalities to image fluorescently labeled zebrafish embryos. Table 1 summarizes the main advantages and disadvantages of both systems. For both forms of microscopy, embryos are mounted in agarose as described in 4 above, and maintained at 28.5 oC throughout the imaging experiment by using a heating chamber on the stage of the microscope. Importantly, the dish with agarose-embedded embryos is allowed to equilibrate to 28.5 oC before imaging commences as temperature fluctuations cause drift in the z-dimension. When conducting long-term imaging experiments (over several hours), place a Plexiglas cover over the petri-dish to reduce evaporation of the buffer.
Wide-field | Point-scanning confocal | |
Cost | Relatively inexpensive | Expensive (approx. 5x more) |
Photo-bleaching | Low | High. The sample is exposed to laser light above and below the focal plane. |
Photo-toxicity | Low | High (see Photo-bleaching above) |
Acquisition speed | Fast | Slow |
Resolution in xy | Abbe’s law | Abbe’s law (can be improved by app. 40% using a very small pinhole; however, in most settings this has little practical application) |
Optical sectioning | Poor | Yes (can be adjusted by pinhole size) |
Tissue penetration | Limited to superficial structures (e.g., Rohon-Beard cells or muscle fibers) | Limited to < 100 mm from the surface of the embryo |
Table 1. General comparison of wide-field and point-scanning confocal microscopy
Here the use of wide-field and confocal microscopy to image mitochondria and centrosomes in living zebrafish embryos is directly compared and contrasted. Depending on the location of the cells in which organelle dynamics are to be examined and the inherent frequency of the specific subcellular events, generally either wide-field or confocal microscopy is the better choice. We imaged organelles in RB neurons located on the surface of the embryo and in retinal cells located deeper. The superficial location of RB neurons together with their two dimensional geometry make them good candidates for being imaged by both wide-field and confocal microscopy (Figure 2). Acquiring images using confocal microscopy is however significantly slower and can lead to an underestimation of the dynamics of specific subcellular events (e.g., movement of mitochondria, Figure 2C,D). Images of retinal cells acquired by wide-field microscopy suffer from poor contrast as fluorescence signals from a large volume of tissue obscures detail in the focal plane. Here, the optical sectioning capability of confocal microscopy results in noticeably improved contrast (Figure 3).
To enable concurrent visualization of organelles and cellular membranes we used the Gal4-UAS system in three different configurations. First, the UAS MitoFish reporter line Tg(UAS-E1b:mYFP,mitoCFP)mde6 was used. Here, a bidirectional UAS permits concomitant expression of mitochondrially-targeted CFP and membrane targeted YFP. In combination with appropriate Gal4 driver lines, MitoFish label the mitochondria and cell membranes of RB sensory neurons (Figure 2A-C) or retinal cells(Figure 3A,B) with CFP and YFP respectively. Second, two UAS constructs (UAS:mitoCFP and UAS:MA-YFP) were combined with a Gal4 driver construct (Sensory:Gal4-VP16, sensory neuron-specific enhancer elements from the islet-1 gene)7 in transient injections. The mosaic expression that generally results from these injections permitted the tracking of individual cells over days (Figure 2E). A third approach employed the use of two UAS cassettes, each driving the expression of a different fusion protein, on a single contiguous construct. This strategy was used to generate CentrinFish Tg(UAS:cetn4-YFP,UAS:MA-Cerulean)tum1, in which a centrin4-YFP fusion labels centrosomes and Cerulean is targeted to cell membranes. In combination with specific Gal4 driver lines the centrosomes and cell membranes of retinal cells (Figure 3C,D) or muscle fibers (Figure 4) are labeled.
Figure 2: Imaging mitochondria in vivo in RB sensory neurons of embryonic zebrafish.
RB sensory neurons in the caudal part of the fin fold of 2 dpf MitoFish were imaged using an apochromat 40x water-dipping-cone objective with an NA of 0.80, either by wide-field (A) or confocal (B) microscopy. Panels to the right show detail of the region outlined. C Wide-field time-lapse images of a small region of interest in the peripheral arbor of an RB neuron in 2 dpf MitoFish. The movement of a single mitochondrion (arrow in 0'') was tracked over 100 sec; six time-points are displayed. The position of the mitochondrion in the previous time-point is outlined in magenta. D The position of the moving mitochondrion in C is plotted over the 100 sec time-window at a sampling frequency of 1 Hz (light pink). The position of the very same mitochondrion was additionally plotted with an artificially down-sampled temporal resolution of 0.05 Hz to mimic the typical acquisition speed of a confocal microscope (magenta). The magenta kymograph does not reveal the fine non-directed movements of the tracked mitochondrion, which would lead to an underestimation of its dynamics. E Confocal images of an RB sensory neuron at 2 and 3 dpf. Labeling of individual RB cells and their mitochondria was achieved by co-injecting a sensory neuron-specific Gal4 driver construct together with two UAS reporter constructs, UAS:mitoCFP and UAS:MA-YFP, at the one-cell stage and screening for isolated double-labeled cells. The image is contrast inverted and individual mitochondria are depicted schematically as magenta dots. Scale bar A,B 20 μm, C 2 μm, E 50 μm. Mitochondrially targeted CFP (mitoCFP), membrane targeted YFP (MA-YFP). Please click here to view a larger version of this figure.
Figure 3: Comparison of wide-field and confocal microscopy to image organelles in vivo in the embryonic zebrafish retina.
Otx2 promoter elements drive the expression of CFP in mitochondria and YFP in cell membranes (A and B) or YFP in centrosomes and Cerulean in cell membranes (C and D) in the retina of 2 dpf zebrafish embryos. To achieve this labeling pattern, Otx2:Gal4 transgenic fish were either crossed to MitoFish (A and B) or CentrinFish (C and D). A 40x water-dipping-cone apochromat objective (NA 0.80) was used to acquire images of the same region in each retina using wide-field (A, C) and confocal (B, D) microscopy. Insets in A and B show detail of a region of the inner nuclear layer, insets in C and D show a cell in M-phase. Scale bar 20 μm. Mitochondrially targeted CFP (mitoCFP), membrane targeted YFP (MA-YFP), centrin4-YFP (cetn4-YFP), membrane targeted Cerulean (MA-Cerulean). Please click here to view a larger version of this figure.
Figure 4: Comparison of wide-field and confocal microscopy to image centrosomes in vivo.
A single muscle fiber with fluorescently tagged cell membranes and centrosomes (Otx2:Gal4; CentrinFish) was imaged using wide-field (A) and confocal (B) microscopy. In both cases a 40x water-dipping-cone apochromat objective (NA 0.80) was used. Scale bar 10 μm. Centrin4-YFP (cetn4-YFP), membrane targeted Cerulean (MA-Cerulean) Please click here to view a larger version of this figure.
Here, we demonstrate the versatility of the Gal4-UAS expression system to fluorescently tag mitochondria, centrosomes and the cellular membranes of specific cell-types in vivo in zebrafish embryos. Many fluorescent fusion proteins that label other organelles or subcellular structures can be found in the published literature and can be obtained from the respective laboratory, commercial sources or non-commercial plasmid depositories (e.g., Addgene). To design a new fluorescent fusion protein, several parameters need to be considered, including which FP to use and whether to fuse the FP at the amino or carboxy terminus of the protein of interest. For a more thorough discussion about generating fluorescent fusion proteins, readers are referred to in-depth articles about the subject49-51.
We highlight three strategies for achieving co-expression of fusion proteins using UAS-driven transgenes. Multiple, separate UAS reporter constructs allow for combining different existing reporter constructs without the need for additional cloning. Reporter expression levels can also be titrated independently. However, higher levels of co-expression are achieved when either multiple UAS cassettes or a bidirectional UAS cassette on a single construct are used. Since FPs are used as tags it is relatively easy to verify co-expression. It should be noted that other methods for multi-cistronic expression also exist, including the use of internal ribosomal entry sites40 and viral 2A peptides52,53. As an alternative to DNA based constructs, in vitro transcribed capped mRNA can be used to express fluorescent fusion proteins to label subcellular structures1,4,8. The caveat of this approach is however that expression is limited to the first few days of development and is not cell or tissue specific. Irrespective of the method chosen to express fusion proteins, it is critical to ensure that expression levels do not lead to non-specific labeling and compromise the physiological state of the cells. In this regard, the amplification of reporter gene expression inherent in the Gal4-UAS system27 can be problematic, manifesting for example as cytosolic labeling even when the FP is targeted to a specific organelle. When available, antibodies should be used to verify that the expression patterns obtained by fusion proteins reflect the endogenous situation. In some instances, injection of low(er) DNA concentrations could mitigate the problem of mis-localization of the fusion protein. Alternatively, vectors with a low number of UAS repeats could help to titrate down transgene expression levels30. Similarly, for the activator Gal4-VP16, modified versions exist, which are reported to drive expression comparatively weakly and are therefore less toxic30,33. If mis-localization of the fusion protein persists despite efforts to titrate down transgene expression levels, it may be necessary to forgo the Gal4-UAS system and drive expression by promoter elements directly.
The stable transgenic lines, MitoFish10 and CentrinFish12, we describe in this manuscript were made using 14xUAS cassettes. We maintain these lines in the background of Gal4 driver lines to detect alterations in expression over generations, since reporter lines with multiple UAS repeats have been reported to be prone to silencing54. We have not seen evidence of silencing over the 3 generations we have propagated the CentrinFish. We have however seen variegated expression in MitoFish and therefore stringently select embryos with 'full', strong levels of expression to propagate for future generations. The current literature suggests that expression vectors with 5xUAS repeats could be an alternative for generating stable transgenic lines – the reporter is driven to high enough levels30 and the comparatively low number of UAS repeats may make it less prone to transgene silencing, although non-repetitive UAS repeats are reportedly even less susceptible54.
The palette of FPs currently available to tag organelles or other subcellular structures is very broad55. When choosing a particular FP as a tag, consideration should be given to the following parameters: First, the excitation and emission spectra of the FP to determine the specific laser line as well as the excitation and emission filters required for its visualization. Second, the brightness and photo-stability of the FP. Third, the speed with which the FP matures following translation. Fourth, whether the FP has a tendency to aggregate in fusions. Regarding the last parameter, care should be exercised and control experiments should be done to test the suitability of each FP for specific experiments. For example, while the red FPs mCherry and DsRed are widely used, they reportedly form aggregates in certain fusions56. We have found TagRFP-T57, a more photo-stable variant of TagRFP, to perform well when targeted to mitochondria and to cellular membranes (unpublished observations). When multiple organelles need to be concomitantly visualized, FPs with non-overlapping spectra should be used. We have successfully used combinations of cyan FPs (CFP and Cerulean) and YFP (Figures 2-4). By exploiting the entire spectral range from blue to near infrared, one can greatly expand the number of subcellular structures that can be concurrently visualized2. In addition to the conventional FPs, photo-activatable FPs are particularly useful to probe organelle dynamics, e.g., the use of the FP Kaede to track the fate of individual mitochondria58.
Which microscopy technique – wide-field or confocal – is the most appropriate for imaging depends on a number of factors, including the location of the cells to be imaged and the speed with which specific subcellular or cellular events are expected to occur. Wide-field microscopy is the preferred modality in superficial locations and sparsely labeled samples. It offers low photo-toxicity and imaging at high speed at a reasonable price. However, if imaging needs to be performed in non-superficial parts of the zebrafish, in densely-labeled samples or to gain three-dimensional information, confocal or another form of optical sectioning microscopy becomes the method of choice.
Irrespective of which cellular or subcellular structure is being monitored, there is often a trade-off between acquiring the best possible image and keeping the sample alive and in good physiological condition for repeated time-lapse imaging. Photo-toxicity can manifest as changes in the behavior of organelles, aberrant morphology of cells or even cell death. Key to reducing photo-bleaching and photo-toxicity for both wide-field and confocal microscopy is to use the lowest possible levels of light to acquire images. In this regard, objectives with the highest possible NA are key to maximize the amount of fluorescent signal that can be collected. For confocal microscopy, a number of parameters can be adjusted to compensate for the use of lower laser power. Detectors with higher quantum efficiency compared to conventional PMTs, e.g., gallium arsenide phosphide detectors, can be used to ensure that emitted photons are more likely to be detected. Alternatively or additionally, higher dynode voltages can be applied in the PMT to increase the sensitivity of the detectors. The confocal aperture (pinhole) can be opened to allow for the collection of more fluorescent signal, albeit with a loss of axial resolution. To expose the samples to as little light as possible, scanning should be done at high speeds such that the dwell time of the laser per pixel is low. Scanning at lower spatial resolution also has the effect of increasing the speed of scanning. Imaging less frequently has the additional benefit of exposing the sample to less light, however should only be considered if it does not compromise the comprehensive sampling of the investigated processes.
As an alternative, spinning disc confocal microscopes and confocal microscopes that are equipped with a so-called 'resonant' scanner offer the ability for fast scanning. Both modalities have the advantage that they are faster and less photo-toxic than 'classical', point-scanning confocal microscopes. However, spinning disc confocal microscopes are more limited in z-resolution and cannot penetrate as deeply into tissue as point-scanning confocal microscopes. Similarly, the application of resonant-scanner confocal microscopes can be limited as the very short pixel dwell time will lead to poorer image quality which could, in turn, preclude the detection of sub-cellular events (e.g., binary images with reduced signal-to-noise).
Lastly, while wide-field and confocal imaging are highlighted here, other forms of light microscopy such as two-photon59 and light-sheet microscopy60 might be more appropriate for specific questions. Two-photon microscopy is based on the excitation of a fluorophore by the simultaneous absorption of two photons in the infrared range of the light spectrum. In common with confocal microscopy, it uses point scanning to acquire images from the sample and has optical sectioning capabilities by virtue of the non-linearity of two-photon excitation. The use of long wavelength light for fluorophore excitation permits imaging at depths several hundred microns from the surface. Furthermore the restriction of excitation to a small imaging volume prevents photo-bleaching and photo-toxicity outside of the focal plane. However, not all FPs have high multiphoton absorption cross-sections, a problem that is particular prevalent in red FPs. Furthermore, finding a single infrared wavelength to simultaneously excite multiple distinct FPs is difficult, making multi-channel imaging cumbersome. Light-sheet microscopy uses a thin 'sheet' (typically thickness ranging from 2 to 10 μm) of laser light to excite the sample and detects fluorescence signals from this illuminated focal plane at a perpendicular angle using a sensitive camera. Optical sectioning is achieved by illuminating a single plane at a time. This restriction of excitation light reduces the occurrence of photo-toxicity. Since fluorescence signals from the entire illuminated plane are collected simultaneously, image acquisition is significantly faster than point scanning confocal and multiphoton microscopes. All these characteristics make light-sheet microscopy particularly suited to imaging dynamic cellular events with high spatiotemporal resolution in large volumes of live samples. Indeed, using light-sheet microscopy cell fate in the entire zebrafish embryo was comprehensively tracked during the first 24 hr of development61. With continued improvements to better imaging penetration62,63 and spatial resolution64, it is conceivable that light-sheet microscopy will be employed to probe dynamics not only at the cellular but also at the subcellular level in whole zebrafish embryos.
The authors have nothing to disclose.
P.E. is supported by the Deutsche Forschungsgemeinschaft (DFG) Research Training Group 1373 and the Graduate School of the Technische Universität München (TUM-GS). G.P. was supported by TUM-GS. L.T. is supported by an EMBO fellowship (EMBO ALTF 108-2013). D.P.’s work on zebrafish was supported by the DFG through the Sonderforschungsbereich “Molecular Mechanisms of Neurodegeneration” (SFB 596); the Center for Integrated Protein Sciences (Munich) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 200611 (MEMOSAD). He is currently a New York Stem Cell Foundation-Druckenmiller Fellow and was supported by a fellowship from the German Academy of Sciences Leopoldina. L.G. is supported by funding from the DFG through SFB 870 “Assembly and Function of Neuronal Circuits”, Project A11.
We are grateful to Kristina Wullimann for maintaining our fish facility, Yvonne Hufnagel for technical support and Thomas Misgeld for comments on the manuscript. We are grateful to R. Köster (Technische Universität Braunschweig) for providing the M1 Medusa vector (pSKmemmRFP:5xUAS:H2B-CFP:5xUAS:Centrin2-YFP) from which we cloned out Centrin-YFP and S.C. Suzuki and T. Yoshimatsu (University of Washington) for providing the 14xUAS:MA-cerulean cassette which we used to generate the reporter construct to make CentrinFish. We further thank S.C. Suzuki and T. Yoshimatsu (University of Washington) for the Otx2:Gal4 transgenic line, A. Sagasti for the Sensory:Gal4-VP16 construct (UCLA) and M. Nonet (Washington University in St. Louis) for the pCold Heart Tol2 vector. We acknowledge Bettina Schmid, Alexander Hruscha and Christian Haass (German Center for Neurodegenerative Diseases Munich – DZNE) for contributing to the development of MitoFish.
Agarose (2-hydroxyethylagarose) | Sigma-Aldrich | A4018-10G | Low-gelling temperature Type VII |
Block heater | Eppendorf | Thermomixer compact | |
Ca(NO3)2 Calcium nitrate hydrate, 99.996% | Aldrich | 202967-50g | To prepare 30x Danieau's |
CCD camera | Qimaging | Retiga Exi Fast 1394 | |
Ceramic Coated Dumont #5 Forceps | Dumont – Fine Science Tools | 11252-50 | #5 Forceps |
Confocal laser-scanning microscope | Olympus | FV1000 Fluoview | |
Culture dish heater | Warner Instrument Corporation | DH-35 | Heating ring |
Ethyl 3-aminobenzoate methanesulfate salt | Fluka Analytical | A5040-100G | Tricaine (anesthetic) |
Fluorescence dissecting microscope | Leica | M205 FA | |
GeneClean kit | MP Biomedicals | 111001200 | |
Glass Bottom Culture Dishes | MatTek Corporation | P35G-0-14-C | 35mm petri dish, 14mm microwell, No. 0 coverglass |
Glass needles | World Precision Instruments Inc. | TW100F-4 | For microinjections |
HEPES | Sigma | H3375-250g | To prepare 30x Danieau's |
High vacuum grease | Dow Corning | DCC000001242 150g | Silicon dioxide grease |
Incubator | Thermo Scientific | Heraeus | To maintain zebrafish embryos at 28.5⁰ C |
KCl 99% | Sigma-Aldrich | S7643-5kg | To prepare 30x Danieau's |
MgSO4.7H2O Magnesium sulfate heptahydrate 98+% A.C.S reagent | Sigma-Aldrich | 230291-500g | To prepare 30x Danieau's |
Microinjector | Eppendorf | FemtoJet | |
Microloader tips | Eppendorf | 930001007 | 0.5-20uL |
Micromanipulator | Maerzhaeuser Wetzlar | MM33 Rechts/00-42-101-0000/M3301R | |
Micropipette holder | Intracel | P/N 50-00XX-130-1 | |
mMESSAGE mMACHINE SP6 Transcription Kit | Ambion | AM1340 | To transcribe PCS-Transposase |
NaCl BioXtra >99.5% | Sigma-Aldrich | P9541-1kg | To prepare 30x Danieau's |
Nanophotometer | To measure DNA/RNA concentration | ||
Needle puller | Sutter Instrument | P-1000 | Flaming/Brown |
NIR Apo 40x/0.80W | Nikon | Water-dipping-cone objective | |
N-Phenylthiourea Grade I, approx. 98% | Sigma | P7629-10G | PTU (prevents pigmentation) |
Petri dishes | Sarstedt AG | 821472 | 92 x 16mm |
Plastic molds | Adaptive Science Tools | TU-1 | For microinjections |
Plexiglas cover-with a hole | Custom-made | The hole in the Plexiglas cover should be 3 mm larger than the diameter of the water-dipping-cone objective | |
Tea-strainer (Plastic) | To collect zebrafish eggs | ||
Temperature controller | Warner Instrument Corporation | TC-344B | Dual Automatic Temperature Controller |
Transfer pipettes | Sarstedt AG | 86.1171 | 3.5mL plastic transfer pipettes |
UMPlanFI 100x/1.00W | Olympus | Water-dipping-cone objective | |
UMPlanFLN 20x/0.50W | Olympus | Water-dipping-cone objective | |
Widefield microscope | Olympus | BX51WI | |
PTU (50x Stock) | Dissolve 76 mg PTU in 50 ml distilled water Stir vigorously at room temperature Store at -20 oC in 1 ml aliquots Use at 1x working solution |
||
Tricaine (20x Stock) | Dissolve 200 mg Tricaine in 48 ml distilled water Add 2 ml 1M Tris base (pH9) Adjust to pH 7 Store at -20 oC in 1 ml aliquots Use at 1x working solution |
||
Danieau's Solution (30x Stock) | 1740 mM NaCl <21 mM KCl 12 mM MgSO4.7H2O 18 mM Ca (NO3)2 150 mM HEPES buffer Distilled water upto 1 L Store at 4 oC Use at 0.3x working solution |