Imaging the dynamic behavior of organelles and other subcellular structures in vivo can shed light on their function in physiological and disease conditions. Here, we present methods for genetically tagging two organelles, centrosomes and mitochondria, and imaging their dynamics in living zebrafish embryos using wide-field and confocal microscopy.
In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.
体内成像提供在最生理上下文细胞行为的直接可视化。斑马鱼的胚胎,其快速的外部发展和丰富的允许荧光标记的遗传工具阵列的透明度,都促使越来越多地使用在体内显微镜阐明关键发育事件的动态。在斑马鱼神经系统发育的成像研究,例如大大扩展了我们的神经祖细胞的行为和他们的后代,包括其后续迁移,分化和电路集成1-8命运的知识。
舞台现在设置调查亚细胞动力学这些细胞行为背后。事实上,斑马鱼已经被利用作为用于体内细胞生物学的工具。它现在是可能的可视化线粒体9-11,中心体2,8,12-14,高尔基15中,微管4和肌动蛋白16细胞骨架,内涵体17和顶膜的组件复杂1,18,在体内斑马鱼胚胎其他亚细胞结构中。到目前为止,大部分的所谓对这些细胞器的功能来自于培养细胞研究他们的行为。而体外研究已经取得了巨大的洞察细胞生物学,细胞培养并不完全代表的体内情况的复杂性和因此不一定反映功能和体内亚细胞器的动力学。斑马鱼的胚胎提供体内替代一个可行的检查亚动态。
作为脊椎动物,斑马鱼拥有的同源那些在哺乳动物中发现许多器官系统( 例如,视网膜神经)。此外,斑马鱼的胚胎被越来越多地用于人类疾病19,20建模</s向上>,包括与中心体功能( 例如,小头畸形21和勒伯尔先天性黑蒙22)和线粒体功能( 例如,帕金森氏病23,τ蛋白病10,24和巴特综合征25), 在体内在细胞和亚细胞水平的成像在这些情况下,将允许更好地了解细胞生物学的这些病理状态的根本。
这里描述的方法的总的目标是提供一种全面的指导来调查在使用体内光学显微镜斑马鱼胚胎细胞器和其它亚细胞结构。 参与体内可视化和跟踪亚细胞结构,整个工作流程描述-遗传标记的方法,以产生瞬时表达和稳定的转基因鱼,最后采用宽视场和共聚焦显微镜成像。虽然这些PROC的edures用于由众多斑马鱼实验室,中所述的协议进行了优化和简化调查亚细胞结构的动态。此处所描述的工作的两个特定方面值得提及:首先,使用在多个配置的GAL4-UAS表达系统在特定细胞类型的基因标签的细胞器。第二,宽视场和共聚焦显微镜的体内直接比较对图像亚细胞结构。
目前的策略,以转基因标签的细胞器和其他亚细胞结构的斑马鱼要么利用皑皑的mRNA 1,4,8或基于DNA的结构,其中子元件直接驱动融合蛋白9,14,15。 体外转录加帽的RNA结果的表达快速和广泛的表达,这不是组织特异性但是。此外,表达水平降低随着时间的推移加帽的RNA稀释或退化。因此,使用RNA的基于构造来检查在发育后期阶段的细胞器动力学是有限的(通常为3天受精后)。
这些限制可通过使用DNA构建,其中表达的空间和时间控制由特定的启动子元件决定来克服。当基于DNA构建中,以转基因表达水平的GAL4-UAS系统显著改善的上下文被用于观察26,27。在此二分表达系统,细胞类型特异性启动子元件驱动的转录激活的Gal4的表达,而报道基因被克隆的Gal4的结合上游激活序列(UAS)的下游。由UAS记者用适当的Gal4的驱动相结合,表达可以被限制到特定的细胞类型,绕过需要每一个特定的表达模式所需时间来克隆的报告基因的不同启动子的后面。此外,多个UAS报告基因的表达可以是由一个单一的Gal4的激活驱动。与GAL4-UAS系统,从而为亚细胞标记的一种多功能灵活的遗传方式。
宽视场和共聚焦显微镜是大多数实验室的工作母机。宽视场系统通常使用弧光灯作为光源,并使用被放置在光路的端部的敏感照相机检测所发射的光。此成像模态典型地限制为薄的样品作为失焦光掩盖较厚样品在焦信息。共焦显微镜之处在于它们是建立有利于从焦平面比那些源于失焦( 即 “光学切片”)28日发起信号,宽领域的系统有所不同。以实现光学切片的针孔被放置在发射路径中的共轭位置以所述点光源。激光器被用作光源和信号与光电倍增管(PMT)来检测。实际上,激光束在样品刷卡逐点和在各点(像素)的荧光发射由光电倍增管检测到。
在这里,我们的图像中同时使用宽视场和共聚焦显微镜以提供镜方式的直接比较活的斑马鱼胚胎非常相同的亚细胞结构。提供这种比较的基础的目的是提供选择适合手边的特定问题的最合适的显微技术的指导方针。
使用这里介绍我们证明线粒体和中心体的GAL4-UAS的遗传标记的方法。这些细胞器是使用宽视场和共聚焦显微镜来证明每个成像模态的适用性在不同细胞类型中的肌肉细胞的神经系统和成像。这里描述的方法可以容易地适于在活斑马鱼胚胎调查其他细胞器和亚细胞结构。
在这里,我们证明了GAL4-UAS表达系统的通用性,以荧光标记的线粒体,中心体和体内在斑马鱼胚胎特定细胞类型的细胞膜。该标签其他细胞器或亚细胞结构的许多荧光融合蛋白可以在出版的文献中找到,并且可以从相应的实验室,商业来源或非商业质粒保藏( 例如,Addgene)获得。设计一个新的荧光融合蛋白,几个参数需要考虑,包括FP使用哪个以及是否在感兴趣蛋白质的氨基或羧基?…
The authors have nothing to disclose.
P.E. is supported by the Deutsche Forschungsgemeinschaft (DFG) Research Training Group 1373 and the Graduate School of the Technische Universität München (TUM-GS). G.P. was supported by TUM-GS. L.T. is supported by an EMBO fellowship (EMBO ALTF 108-2013). D.P.’s work on zebrafish was supported by the DFG through the Sonderforschungsbereich “Molecular Mechanisms of Neurodegeneration” (SFB 596); the Center for Integrated Protein Sciences (Munich) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 200611 (MEMOSAD). He is currently a New York Stem Cell Foundation-Druckenmiller Fellow and was supported by a fellowship from the German Academy of Sciences Leopoldina. L.G. is supported by funding from the DFG through SFB 870 “Assembly and Function of Neuronal Circuits”, Project A11.
We are grateful to Kristina Wullimann for maintaining our fish facility, Yvonne Hufnagel for technical support and Thomas Misgeld for comments on the manuscript. We are grateful to R. Köster (Technische Universität Braunschweig) for providing the M1 Medusa vector (pSKmemmRFP:5xUAS:H2B-CFP:5xUAS:Centrin2-YFP) from which we cloned out Centrin-YFP and S.C. Suzuki and T. Yoshimatsu (University of Washington) for providing the 14xUAS:MA-cerulean cassette which we used to generate the reporter construct to make CentrinFish. We further thank S.C. Suzuki and T. Yoshimatsu (University of Washington) for the Otx2:Gal4 transgenic line, A. Sagasti for the Sensory:Gal4-VP16 construct (UCLA) and M. Nonet (Washington University in St. Louis) for the pCold Heart Tol2 vector. We acknowledge Bettina Schmid, Alexander Hruscha and Christian Haass (German Center for Neurodegenerative Diseases Munich – DZNE) for contributing to the development of MitoFish.
Agarose (2-hydroxyethylagarose) | Sigma-Aldrich | A4018-10G | Low-gelling temperature Type VII |
Block heater | Eppendorf | Thermomixer compact | |
Ca(NO3)2 Calcium nitrate hydrate, 99.996% | Aldrich | 202967-50g | To prepare 30x Danieau's |
CCD camera | Qimaging | Retiga Exi Fast 1394 | |
Ceramic Coated Dumont #5 Forceps | Dumont – Fine Science Tools | 11252-50 | #5 Forceps |
Confocal laser-scanning microscope | Olympus | FV1000 Fluoview | |
Culture dish heater | Warner Instrument Corporation | DH-35 | Heating ring |
Ethyl 3-aminobenzoate methanesulfate salt | Fluka Analytical | A5040-100G | Tricaine (anesthetic) |
Fluorescence dissecting microscope | Leica | M205 FA | |
GeneClean kit | MP Biomedicals | 111001200 | |
Glass Bottom Culture Dishes | MatTek Corporation | P35G-0-14-C | 35mm petri dish, 14mm microwell, No. 0 coverglass |
Glass needles | World Precision Instruments Inc. | TW100F-4 | For microinjections |
HEPES | Sigma | H3375-250g | To prepare 30x Danieau's |
High vacuum grease | Dow Corning | DCC000001242 150g | Silicon dioxide grease |
Incubator | Thermo Scientific | Heraeus | To maintain zebrafish embryos at 28.5⁰ C |
KCl 99% | Sigma-Aldrich | S7643-5kg | To prepare 30x Danieau's |
MgSO4.7H2O Magnesium sulfate heptahydrate 98+% A.C.S reagent | Sigma-Aldrich | 230291-500g | To prepare 30x Danieau's |
Microinjector | Eppendorf | FemtoJet | |
Microloader tips | Eppendorf | 930001007 | 0.5-20uL |
Micromanipulator | Maerzhaeuser Wetzlar | MM33 Rechts/00-42-101-0000/M3301R | |
Micropipette holder | Intracel | P/N 50-00XX-130-1 | |
mMESSAGE mMACHINE SP6 Transcription Kit | Ambion | AM1340 | To transcribe PCS-Transposase |
NaCl BioXtra >99.5% | Sigma-Aldrich | P9541-1kg | To prepare 30x Danieau's |
Nanophotometer | To measure DNA/RNA concentration | ||
Needle puller | Sutter Instrument | P-1000 | Flaming/Brown |
NIR Apo 40x/0.80W | Nikon | Water-dipping-cone objective | |
N-Phenylthiourea Grade I, approx. 98% | Sigma | P7629-10G | PTU (prevents pigmentation) |
Petri dishes | Sarstedt AG | 821472 | 92 x 16mm |
Plastic molds | Adaptive Science Tools | TU-1 | For microinjections |
Plexiglas cover-with a hole | Custom-made | The hole in the Plexiglas cover should be 3 mm larger than the diameter of the water-dipping-cone objective | |
Tea-strainer (Plastic) | To collect zebrafish eggs | ||
Temperature controller | Warner Instrument Corporation | TC-344B | Dual Automatic Temperature Controller |
Transfer pipettes | Sarstedt AG | 86.1171 | 3.5mL plastic transfer pipettes |
UMPlanFI 100x/1.00W | Olympus | Water-dipping-cone objective | |
UMPlanFLN 20x/0.50W | Olympus | Water-dipping-cone objective | |
Widefield microscope | Olympus | BX51WI | |
PTU (50x Stock) | Dissolve 76 mg PTU in 50 ml distilled water Stir vigorously at room temperature Store at -20 oC in 1 ml aliquots Use at 1x working solution |
||
Tricaine (20x Stock) | Dissolve 200 mg Tricaine in 48 ml distilled water Add 2 ml 1M Tris base (pH9) Adjust to pH 7 Store at -20 oC in 1 ml aliquots Use at 1x working solution |
||
Danieau's Solution (30x Stock) | 1740 mM NaCl <21 mM KCl 12 mM MgSO4.7H2O 18 mM Ca (NO3)2 150 mM HEPES buffer Distilled water upto 1 L Store at 4 oC Use at 0.3x working solution |