Naïve CD4+ T cells polarize to various subsets depending on the environment at the time of activation. The differentiation of naïve CD4+ T cells to various effector subsets can be achieved in vitro through the addition of T cell receptor stimuli and specific cytokine signals.
Antigen inexperienced (naïve) CD4+ T cells undergo expansion and differentiation to effector subsets at the time of T cell receptor (TCR) recognition of cognate antigen presented on MHC class II. The cytokine signals present in the environment at the time of TCR activation are a major factor in determining the effector fate of a naïve CD4+ T cell. Although the cytokine environment during naïve T cell activation may be complex and involve both redundant and opposing signals in vivo, the addition of various cytokine combinations during naive CD4+ T cell activation in vitro can readily promote the establishment of effector T helper lineages with hallmark cytokine and transcription factor expression. Such differentiation experiments are commonly used as a first step for the evaluation of targets believed to promote or inhibit the development of certain CD4+ T helper subsets. The addition of mediators, such as signaling agonists, antagonists, or other cytokines, during the differentiation process can also be used to study the influence of a particular target on T cell differentiation. Here, we describe a basic protocol for the isolation of naïve T cells from mouse and the subsequent steps necessary for polarizing naïve cells to various T helper effector lineages in vitro.
The concept of distinct lineages or subsets of CD4+ T helper (Th) cells has been around since the latter part of the 20th century1. Recognition of cognate antigen in the presence of costimulatory signals results in several rounds of cellular proliferation and the eventual differentiation into effector Th cells. The type of Th cell generated during this process is dependent on the cytokine environment present during activation2. Initially, naïve Th cells were thought to polarize into 2 distinct lineages following T cell receptor (TCR) activation, costimulatory CD28 ligation, and cytokine signaling. Type 1 helper cells (Th1) are characterized by their effector production of the IFNγ cytokine as well as their requirement for IL-12 signaling during the differentiation process3,4. Eventually it was discovered that differentiated Th1 cells have a genetic profile that is most distinctively characterized by the expression of the T box family transcription factor, Tbx21 (T-bet), which is considered the master regulator of the Th1 genetic program5. Furthermore, IL-12 as well as IFNγ can promote T-bet expression6,7. In the immune response, Th1 cells are important for the host defense against intracellular pathogens as well as strong promoters of autoimmune inflammation. In contrast, type 2 helper cells (Th2) require IL-4 for their development and their effector cytokines, including IL-4, IL-5, and IL-13, are important for driving B cell responses and are pathogenic in allergy8,9. Similar to Th1 cells, Th2 cells were found to express their own master transcriptional regulator, termed GATA-310,11. Interestingly, the presence of polarizing cytokines and the generation of a specific Th lineage are antagonistic to the development of others2,12, suggesting that only a particular Th subset may become dominant during an immune response.
Since the identification of the Th1 and Th2 lineages, further work has demonstrated even more unique subsets of T helper cells, including follicular helper (TFH), IL-9-producing (Th9), and IL-22-producing (Th22)(recently reviewed in13). For the purposes of in vitro differentiation experiments, this protocol will focus only on two additional Th subsets, termed regulatory T cells (Treg) and IL-17-producing CD4+ T cells (Th17). CD25+ regulatory T cells can occur naturally (nTreg) in the thymus; naïve Th cells may also be induced (iTreg) to become regulatory in the periphery (reviewed in14,15). Both types of Tregs express a characteristic transcription factor, termed forkhead box P3 (Foxp3), which is critical for their effector suppression mechanisms that include soluble anti-inflammatory mediator production, IL-2 consumption, and cell contact-dependent mechanisms14,15. The lack of Foxp3 expression results in a severe, multi-organ autoimmune disorder termed immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), demonstrating the critical role of this Th subset in resolving inflammation and regulating peripheral tolerance to self antigens16. In vitro, naïve CD4+ T helper cells up-regulate Foxp3 and become committed to the Treg program upon stimulation with IL-2 and TGF-β14,15. There may be moderate to considerable plasticity in CD4+ T cell lineages, especially when considering only cytokine production (reviewed in 17,18). However, for the purposes of in vitro differentiation protocols, we will be discussing each subset as a unique lineage.
Recently, a subset of Th17 cells that produces the IL-17 cytokine was identified as a unique lineage with pro-inflammatory functions that are particularly pathogenic during autoimmune inflammation19-21. Th17 cells express a unique transcription factor, termed retinoid-related orphan receptor gamma t (RORγt) that coordinates the Th17 genetic program22. TGFβ is important for the generation of Th17 lineage through the induction of RORγt. However, the effect of TGFβ signaling is believed to only induce Th17 commitment upon synergizing with IL-6 (reviewed in12). Further studies have shown that a variety of other signals that can positively regulate Th17 commitment, including IL-1β, increased sodium, and TLR signaling23-26. Other reports have suggested that the pathogenic Th17 cells in vivo are the ones that actually bypass TGFβ signaling and instead rely on a combination of IL-1, IL-6, and IL-23 for their differentiation27. Thus, Th17 cells may be derived from a variety of signaling pathways; for the purposes of this protocol, the commonly-used (TGFβ and IL-6) pathway for Th17 lineage commitment will be presented.
The differentiation protocols described below for all effector lineages relies on fixed antibody as stimuli for the TCR and CD28 throughout the entire course of the experiment. However, others have demonstrated that TCR activation with antigen-presenting cells28 or cross-linking anti-CD3 and anti-CD28 antibodies with hamster antibody for 2 days29 are also highly effective means of inducing the generation of various Th subsets. The protocol presented here builds on previously reported methods for isolating murine CD4+ T cells from secondary lymphoid organs30 and generating Th17 cells31. One major difference is that this protocol relies on the use of a cell sorter to isolate naïve CD4+ T cells from lymphoid tissues. However, many companies now offer rapid separation kits that can enrich for naïve CD4+ T cells, which may be able to bypass the requirement for sorting depending on the experiment. The methods and reagents presented in this protocol are what we routinely use and find to be the most effective. However, keep in mind that alternative reagents and methodologies exist for many of the steps presented below and it is up to the individual lab to determine what will work best for their purposes.
All experimental procedures are performed using protocols approved by the office of Environmental Health and Safety at the Rosalind Franklin University of Medicine and Science. C57BL/6 mice (purchased from NCI) used for this protocol were housed under specific pathogen-free conditions, and all animal experiments were performed using protocols approved by the Institutional Animal Care and Use Committee (IACUC) at the Rosalind Franklin University of Medicine and Science.
1. Preparation of Instruments, Supplies, and Reagents
2. Isolation of Lymph Nodes and Spleen from Mice
3. Tissue Processing and CD4+ Enrichment
4. Sorting Naïve CD4+ T cells
5. Setting Up the In vitro Differentiation
6. Analysis of Differentiation
The time point for the analysis of differentiation can vary depending on the Th condition being tested as well as the strength of T cell receptor activation. After 2-3 days of differentiation, cells can be visualized by light microscopy to determine the extent of T cell proliferation. Wells exhibiting extensive proliferation and clumping of cells will most likely be ready for analysis at day 4. Differentiation conditions relying on the addition of exogenous IL-2, such as Th1 and Th2, will likely exhaust the media after 4 days in culture. To maximize cytokine production, such wells with exhausted media can be replenished with fresh RPMI containing IL-2 or counted and re-plated at 1 x 106 cells per well in fresh RPMI containing IL-2 to extend the differentiation for another day or two using this method.
Figure 1. Illustration of pin placement to fix a mouse for the isolation of spleen and lymph nodes. (A) Spread the limbs apart and fix them with a sterile needle or dissection pin. From this position, cut the fur and skin longitudinally from the tail to the chin. (B) After cutting, gently spread the skin apart to expose the lymph nodes as shown in the picture. The locations of lymph nodes that are easily accessible from this position are listed in the picture. The spleen is located just under the ribcage on the right side of the animal. Please click here to view a larger version of this figure.
Figure 2. Representative sorting strategy for the isolation of naïve CD4+ T cells by cell sorting. Starting from the upper left, lymphocytes are first gated by size and then singlet cells are discriminated from doublet cells. Gating on singlets reveals a population of CD4+CD25+ cells that are nTregs. Gate on the CD4+CD25– population and then sort naïve (CD62L+CD44–) from the effector/memory (CD62L–CD44+) CD4+ cells. Dotted lines indicate the gate origin of the next plot. Please click here to view a larger version of this figure.
Figure 3. Sample data following in vitro Th differentiation. (A) Intracellular cytokine staining data (gated on CD4+) from Th1, Th2, iTreg, and Th17 differentiations. Typically, non-lineage specific cytokines, such as IL-4 and IFNγ for Th17 cultures, should be stained to determine the quality of the differentiation. (B) ELISA data following 4 d Th differentiation, washing, and 24 h restimulation of cells with 1 μg/ml anti-CD3. (C) Real time PCR data of lineage-specific transcription factors following 4 d differentiation and restimulation for 4 h with 1 μg/ml anti-CD3. All gene quantities were normalized to the expression of β-actin and mRNA from undifferentiated naïve T cells serve as the baseline for gene expression. Please click here to view a larger version of this figure.
Table 1. See Materials Table below.
Reagent | Recommended Titration Range |
Cytokines: | |
Human (h) IL-2 | 5 U/ml – 50 U/ml |
rmIL-4 | 5 ng/ml - 30 ng/ml |
rmIL-6 | 5 ng/ml – 30 ng/ml |
rmIL-12 | 10 ng/ml – 30 ng/ml |
hTGFb (Th17) | 0.1 ng/ml – 5 ng/ml |
hTGFb (iTreg) | 5 ng/ml – 30 ng/ml |
Antibodies: | |
2C11 (anti-CD3) | 500 ng/ml – 5,000 ng/ml |
37.51 (anti-CD28) | 250 ng/ml – 2,500 ng/ml |
11B11 (anti-IL-4) | 5,000 – 10,000 ng/ml |
XMG1.2 (anti-IFNg) | 5,000 – 10,000 ng/ml |
Table 2. Recommended Titration Range for the Optimization of Differentiation Conditions.
While the spleen contains naïve Th cells, the proportion of this population in lymph nodes is much higher. Failure to properly identify and remove lymph nodes in this protocol will result in a poor yield of naïve cells. This can be especially difficult in older mice or male mice that have more fat tissue. As shown in Figure 1, proper fixing and pinning of the animal limbs and skin will allow for easier visualization of the accessible exterior lymph nodes. Once lymph nodes and spleens are processed, cell sorting is the preferred method of obtaining a highly purified naïve CD4+ T cell population. Purity is critical to prevent nTregs or effector and memory Th cells from influencing the naïve cell differentiation process. Difficulties in obtaining a high yield of naïve T cells are typically caused by inefficient tissue collection and processing or loss of cells during the separation steps. To increase yield make sure to process the cells using cold buffers and incubations on ice. Furthermore, to prevent loss of cells during enrichment and/or sorting, optimizing the reagents and separation protocols beforehand is recommended. Finally, as mentioned at various points in the protocol steps, differentiation conditions should be optimized for individual laboratories before performing large scale experiments (Table 2).
As shown in Figure 2, naïve CD4+ T cells can be easily be distinguished from the nTreg (CD4+CD25+) and effector (CD4+CD44+CD62L–) populations. Sorting is one of the most reliable ways to prevent contamination of effector Th subsets, which also exist in the spleen and lymph nodes. Treg contamination during the differentiation may result in the suppression of activation as well as cytokine production. Contamination of other effector Th subsets may result in the production of cytokines that are inhibitory to the development of desired Th lineages. Sorting facility fees can be expensive and some find that it is easier to enrich for CD4+ T cells by magnetic separation to cut down on sorting time as described in this protocol. In the absence of a sorter, some companies now offer separation kits designed specifically for the isolation of naïve CD4+ T cells. However, the purity of the population should always be checked after separation, similar to sorted samples. The finding of a low frequency of naïve CD4+ T cells (CD62L+) in comparison to the memory/effector cells (CD44–) may indicate a problem with the mouse, such as an infection or tumor. In this case the cells should not be used for this type of experiment.
There are quite a few ways to determine the effectiveness of Th differentiation. Protein analysis is traditionally performed by cytokine staining, which will give an idea of the percentage of naïve cells that have been polarized to a specific lineage (Figure 3). Protein quantification by ELISA is also a useful tool to determine the total amount of cytokines being released into the media. The caveat with ELISA protein analysis though is that comparing results between experimental groups may be difficult if a particular factor being tested has an influence on proliferation and survival. In this case, the total numbers of cells producing cytokines may be different between groups at the end of the experiment. Thus, normalizing the cell count and restimulating for a short period of time (e.g., anti-CD3 for 24 h) is necessary to obtain appropriate results. Furthermore, IL-4 is used as a polarizing factor for the generation of the Th2 subset, so these cells must be washed, normalized, and restimulated prior to performing an ELISA for IL-4. Gene expression analysis by real time PCR is useful not only for the analysis of cytokine gene transcription, but also for lineage-specific transcription factors (Figure 3). Thus, depending on the experiment, there are various ways to assay the effectiveness of Th differentiation.
The authors have nothing to disclose.
The authors would like to thank all members of the Reynolds lab at Rosalind Franklin University of Medicine and Science, and the Chen Dong lab at the University of Texas MD Anderson Cancer Center for optimization of this protocol. This work was supported by a grant to J.M.R. from the National Institutes of Health (K22AI104941).
Complete RPMI: | Warm in a 37 oC water bath before use | ||
RPMI 1640 Media | Life Technologies | 11875119 | |
10 % FBS | Life Technologies | 26140-079 | |
1000X 2-mercaptoethanol | Life Technologies | 21985023 | |
100X Pen/Strep | Life Technologies | 15140122 | |
100X L-glutamine | Life Technologies | 25030081 | |
120 micron nylon mesh | Amazon | CMN-0120-10YD | Cut into 2 cm2 squares and autoclave |
Alternative: 100 micron cell strainers | Fisher | 08-771-19 | Alternative to cutting nylon mesh |
autoMACS running buffer | Miltenyi | 130-091-221 | Warm in a 37 oC water bath before use |
autoMACS rinsing solution | Miltenyi | 130-091-222 | Warm in a 37 oC water bath before use |
CD4 beads | Miltenyi | 130-049-201 | |
ACK lysis buffer | Life Technologies | A10492-01 | |
Cytokines: | |||
Human (h) IL-2 | Peprotech | 200-02 | |
Recombinant mouse (rm) IL-4 | Peprotech | 214-14 | |
rmIL-6 | R & D Systems | 406-ML-025 | |
rmIL-12 | Peprotech | 210-12 | |
hTGFb | R & D Systems | 240-B-010 | |
Antibodies: | |||
2C11 (anti-CD3) | BioXcell | BE0001-1 | |
37.51 (anti-CD28) | BioXcell | BE0015-1 | |
11B11 (anti-IL-4) | BioXcell | BE0045 | |
XMG1.2 (anti-IFNg) | BioXcell | BE0055 | |
anti-CD62L-FITC | BioLegend | 104406 | Use at 1:100 |
anti-CD25-PE | BioLegend | 102008 | Use at 1:400 |
anti-CD4-PerCP | BioLegend | 100434 | Use at 1:1000 |
anti-CD44-APC | BioLegend | 103012 | Use at 1:500 |
Phorbol 12-myristate 13 acetate (PMA) | Sigma-Aldrich | P-8139 | Prepare a stock at 0.1 mg/ml in DMSO and freeze aliquots at -20 oC |
Ionomycin | Sigma-Aldrich | I-0634 | Prepare a stock at 0.5 mg/ml in DMSO and freeze aliquots at -20 oC |
Brefeldin A | eBioscience | 00-4506-51 | Use at 1:1000 |