Summary

3D器官联合培养模型支持胸腺髓质上皮细胞增殖,分化和混杂基因表达

Published: July 30, 2015
doi:

Summary

Studying medullary thymic epithelial cells in vitro has been largely unsuccessful, as current 2D culture systems do not mimic the in vivo scenario. The 3D culture system described herein – a modified skin organotypic culture model – has proven superior in recapitulating mTEC proliferation, differentiation and maintenance of promiscuous gene expression.

Abstract

帧内胸腺T细胞的发展需要一个复杂的三维网状组织的各种基质细胞, 非T细胞组成。胸腺遍历这个支架在一个高度协调的时间和空间秩序,同时顺序通过强制性的检查点, T细胞谱系的承诺,其次是T细胞受体库的生成和选择之前,其出口到周边。形成该支架的两个主要居民小区类型是皮质(cTECs)和髓胸腺上皮细胞(mTECs)。 mTECs的一个关键特征是众多组织限制性抗原所谓混杂的表达。这些组织限制性抗原呈现,以直接或间接的不成熟的胸腺细胞通过mTECs或胸腺树突状细胞,分别导致自身耐受。

合适的体外模型模拟cTECs和mTECs的发展途径和功能在当前LAC国王。这种缺乏足够的实验模型已例如阻碍混杂基因的表达,这仍然​​知之甚少在细胞和分子水平上的分析。我们适应了3D器官联合培养模式,培养体外分离mTECs。最初设计该模型培养的角质形成细胞在这样的方式来产生皮肤等效体外 。 3D模型保存MTEC生物学重点功能特点:(I)的增殖和CD80 LO,艾尔阴性终末分化成CD80 ,艾尔阳性mTECs,(二)反映RANKL,并FoxN1(三)持续表达, AIRE和CD80 mTECs组织限制性基因。

Introduction

显影胸腺细胞约占98%,胸腺,而其余的2%由多种细胞,它们共同构成了胸腺基质( 即,上皮细胞,树突细胞,巨噬细胞,B细胞,成纤维细胞,内皮细胞)。外皮质上皮细胞(cTECs)促亲T细胞的移民从骨髓,T细胞谱系的诱导多能前T细胞和阳性选择自我的MHC限制性不成熟的胸腺细胞。所述内髓胸腺上皮细胞(mTECs)参与耐受诱导那些胸腺细胞具有高亲和性TCR为自身肽/ MHC复合物由两种诱导阴性选择或它们的偏差成T调节细胞谱系。在中央耐受诱导的上下文中,mTECs是因为它们表达了广泛的组织限制性自身抗原(的TRAs)因而镜像的周自谱是唯一的。这种现象被称为混杂基因表达(PGE)1,2。

关于这个迷人的细胞类型的最新研究依赖于体外分离的细胞,如各种短期二维培养系统总是导致PGE的损失和关键调节分子如MHC II类,FoxN1和艾尔内的第2天3-6 。它仍然不清楚然而,这尤其是元器件和胸腺的完整3D小梁的特点在2D模式不翼而飞。的再聚集胸腺器官培养(RTOC)一直迄今唯一的三维系统,使T细胞发育的研究中,一方面,与基质细胞生物学,另一方面,在一个完整的胸腺微环境7。然而,RTOCs有一定的局限性, 即,它们已经含有细胞的复杂混合物,需要胚胎基质细胞的输入和忍受的5到10天的最大培养期。

还原的体外培养体系的缺乏阻碍的研究T细胞发育和胸腺器官几个方面PGE的不仅仅是分子调控及其对mTECs的发育生物学关系。

由于紧密关联的皮肤和胸腺上皮细胞的结构化组织,我们选择了已被开发的最初仿效体外角质细胞的分化,从而创造一个真皮当量的三维器官培养(OTC)系统。场外交易系统由覆盖与被困在纤维蛋白胶,其上的角质形成细胞接种8,9真皮成纤维细胞惰性支架矩阵。在这里,我们代替角质形成细胞纯化mTECs。在保持这一模式的基本特征,我们优化的某些参数。

在通过场外交易模式mTECs增殖,进行终末分化和维护MTEC身份和铂族元素, 在体内 mTECs的发展密切相关,从而模仿<sup> 10。本技术说明提供了一个详细的协议,允许逐步建立胸腺OTCS的。

Protocol

这项研究已批准Regierungspräsidium卡尔斯鲁厄的伦理委员会。所有动物饲养无特定病原体条件下在德国癌症研究中心(DKFZ)下。对于所有的培养实验小鼠幼仔范围从1岁到7天被使用。 从胸腺1.隔离mTECs的注:如无菌条件下先前1中记载有一些修改如下进行以下的消化步骤。 斩首的乳鼠,取出胸腺。放置在冰上thymi在含有RPMI 1640培养基(?…

Representative Results

我们采用了3D器官联合培养模型(3D OTC)已被最初开发的角质9 体外长期培养。 MACS富集mTECs(见MACS富集方案图1)接种到含有纤维蛋白胶包裹和成纤维细胞的支架。成纤维细胞提供必要的细胞外基质(ECM) 体外支承mTECs。 MTECs培养在OTCS为4-14天在RANKL的存在下,在浸没培养不像角化细胞,这是空气暴露模仿它们在体内环境(参见场外的建立方案图2)。<…

Discussion

沿着RTOCs,三维OTCS已经于TEC分化和PGE维护/感应( 表1)相对于其它(ⅰ)“简化3D培养'使用的术语是由远优于-的成纤维细胞单独无脚手架; (ⅱ)二维系统使用-成纤维细胞/饲养细胞共培养的TECs 10,(ⅲ)3T3-J2细胞,其中的TEC克隆发展,但PGE丢失,(ⅳ)基质胶或(v)ECM组分(未发表数据)。 PGE下保持7天,在3D OTCS 4天为最佳时间点之后,PGE开始下降。其他形态的TEC特征?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work has been supported by the German Cancer Research Center (DKFZ), the EU-consortium “Tolerage”, the Deutsche Forschungsgemeinschaft (SFB 938) and the Landesstiftung Baden-Württemberg.

Materials

Pregnant C57BL/6 mice  Charles River WIGA
LS columns Miltenyi Biotec 130-042-401
MS columns Miltenyi Biotec 130-042-201
CD45 Microbeads, mouse Miltenyi Biotec 130-052-301
Anti-PE Microbeads Miltenyi Biotec 130-048-801
Streptavidin Microbeads Miltenyi Biotec 130-048-101
EpCAM (G8.8 -Alexa 647 and -biotin) Ref. 12
CD80-PE antibody BD Pharmingen 553769
CD45-PerCP antibody BD Pharmingen 557235
Ly51-FITC antibody BD Pharmingen 553160
CDR1-Pacific Blue Ref. 15
Keratin 14 antibody Covance PRB-155P
Vimentin antibody Progen GP58
Cy3-conjugated AffiniPure Goat anti-Rabbit IgG (H+L) Jackson ImmunoResearch  111-165-003
Alexa 488-conjugated AffiniPure F(ab')2 Fragment Goat anti-Guinea Pig IgG (H+L) Jackson ImmunoResearch  106-546-003
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate Molecular Probes (Invitrogen GmbH) A-11008
Click-iT EdU Alexa Fluor 594 Imaging Kit Invitrogen C10339
Click-iT EdU Alexa Fluor 488 Flow Cytometry Assay Kit Invitrogen C10425
12-well filter inserts (thincerts) Greiner bio-one 657631
12-well plate Greiner 665180-01
Jettex 2005/45 ORSA, Giorla Minore, Italy
Fibrinogen TISSUECOL-Kit Immuno Baxter
Thrombin TISSUECOL-Kit Immuno Baxter
PBS Serva 47302.03
DMEM Lonza BE12-604F
DMEM/F12 Lonza BE12-719F
HEPES Gibco 15630-049 
FBS Gold GE Healthcare A11-151
Aprotinin (Trasylol) Bayer 4032037
Cholera toxin Biomol G117
Hydrocortisone Seromed (Biochrom) K3520
L-ascorbic acid Sigma A4034
TGF-ß1 Invitrogen PHG9214
RANKL R&D systems 462-TR-010
Thermolysin Sigma Aldrich  T-7902
OCT Compound TissueTek 4583
Trizol (aka. Denaturing solution – Acid guanidinium thiocyanate-phenol-chloroform extraction) Invitrogen 10296028
FastPrep FP120 Thermo Scientific
Collagenase Type IV  CellSystems LS004189 0.2 mg/ml and 57U/ml final conc.
Neutrale Protease (Dispase) CellSystems LS002104 0.2 mg/ml and 1.2U/ml final conc.
DNase I  Roche 11 284 932 001 25 µg/ml final conc.

References

  1. Derbinski, J., Schulte, A., Kyewski, B., Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2, 1032-1039 (2001).
  2. Kyewski, B., Klein, L. A central role for central tolerance. Annual review of immunology. 24, 571-606 (2006).
  3. Bonfanti, P., et al. Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature. 466, 978-982 (2010).
  4. Kont, V., et al. Modulation of Aire regulates the expression of tissue-restricted antigens. Molecular Immunology. 45, 25-33 (2008).
  5. Mohtashami, M., Zuniga-Pflucker, J. C. Three-dimensional architecture of the thymus is required to maintain delta-like expression necessary for inducing T cell development. J Immunol. 176, 730-734 (2006).
  6. Palumbo, M. O., Levi, D., Chentoufi, A. A., Polychronakos, C. Isolation and characterization of proinsulin-producing medullary thymic epithelial cell clones. Diabetes. 55, 2595-2601 (2006).
  7. White, A., Jenkinson, E., Anderson, G. Reaggregate thymus cultures. Journal of visualized experiments : JoVE. , (2008).
  8. Stark, H. J., et al. Epidermal homeostasis in long-term scaffold-enforced skin equivalents. J Investig Dermatol Symp Proc. 11, 93-105 (2006).
  9. Boehnke, K., et al. Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol. 86, 731-746 (2007).
  10. Pinto, S., et al. An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. J Immunol. 190, 1085-1093 (2013).
  11. Gabler, J., Arnold, J., Kyewski, B. Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. Eur J Immunol. 37, 3363-3372 (2007).
  12. Farr, A., Nelson, A., Truex, J., Hosier, S. Epithelial heterogeneity in the murine thymus: a cell surface glycoprotein expressed by subcapsular and medullary epithelium. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 39, 645-653 (1991).
  13. Stark, H. J., et al. Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. Eur J Cell Biol. 83, 631-645 (2004).
  14. Schoop, V. M., Mirancea, N., Fusenig, N. E. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol. 112, 343-353 (1999).
  15. Rouse, R. V., Bolin, L. M., Bender, J. R., Kyewski, B. A. Monoclonal antibodies reactive with subsets of mouse and human thymic epithelial cells. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 36, 1511-1517 (1988).

Play Video

Cite This Article
Pinto, S., Stark, H., Martin, I., Boukamp, P., Kyewski, B. 3D Organotypic Co-culture Model Supporting Medullary Thymic Epithelial Cell Proliferation, Differentiation and Promiscuous Gene Expression. J. Vis. Exp. (101), e52614, doi:10.3791/52614 (2015).

View Video