Listeria monocytogenes causes fetal infections in pregnant women and meningitis in susceptible populations. Subpopulations of bacteria can colonize cardiac tissue, causing myocarditis in patients and laboratory animals. Here we present a protocol that describes how to assess L. monocytogenes cardiac cell invasion in vitro and cardiac colonization in infected animals.
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is capable of causing serious invasive infections in immunocompromised patients, the elderly, and pregnant women. The most common manifestations of listeriosis in humans include meningitis, encephalitis, and fetal abortion. A significant but much less documented sequelae of invasive L. monocytogenes infection involves the heart. The death rate from cardiac illness can be up to 35% despite treatment, however very little is known regarding L. monocytogenes colonization of cardiac tissue and its resultant pathologies. In addition, it has recently become apparent that subpopulations of L. monocytogenes have an enhanced capacity to invade and grow within cardiac tissue. This protocol describes in detail in vitro and in vivo methods that can be used for assessing cardiotropism of L. monocytogenes isolates. Methods are presented for the infection of H9c2 rat cardiac myoblasts in tissue culture as well as for the determination of bacterial colonization of the hearts of infected mice. These methods are useful not only for identifying strains with the potential to colonize cardiac tissue in infected animals, but may also facilitate the identification of bacterial gene products that serve to enhance cardiac cell invasion and/or drive changes in heart pathology. These methods also provide for the direct comparison of cardiotropism between multiple L. monocytogenes strains.
Listeria monocytogenes is a Gram-positive intracellular pathogen capable of causing severe disease in susceptible populations, including the elderly, pregnant women, people with HIV/AIDS, and persons receiving chemotherapy1. Infection in these populations is frequently the result of ingesting contaminated food products, and most infections are associated with large-scale food-borne outbreaks2,3. In humans and other mammals, L. monocytogenes is capable of translocating across the epithelial border of the small intestine, thereafter being transported to the liver4,5. Animal models suggest that ingested bacteria replicate within the intestinal villi and transit to the liver through the portal vein or spread via the mesenteric lymph nodes into the blood stream, leading to hematogenous dissemination to the liver and spleen6,7. In the liver and spleen, the bacterium is capable of mediating uptake into both professional phagocytes as well as resident parenchymal cells, and quickly establishes infections within these organs. As bacterial load increases, numerous bacteria are dispersed back into the blood, where they are capable of further colonizing susceptible tissues including the central nervous system and placenta (where present). Colonization of these sites precludes most common manifestations of listeriosis in humans, including meningitis, encephalitis, and fetal abortion2.
Selected subpopulations of L. monocytogenes have been recently shown to have an enhanced capacity to invade and replicate within cardiac tissue8. Manifestations of heart involvement are varied, and range from endocarditis and pericarditis, to fulminant myocarditis complete with conduction abnormalities9-13. The overall number of L. monocytogenes cardiac cases per year is low but may be under estimated as this facet of infection is not generally well recognized. Colonization of the heart by pathogens often requires host predispositions such as pre-existing valvular damage or artificial heart valves. There are, however, isolates of L. monocytogenes that have been identified that are notable for their capacity to colonize the hearts of infected animals in the absence of any cardiac damage and/or abnormalities8.
Herein are described in vitro and in vivo methods for assessing bacterial colonization of cardiac tissue within infected animals using invasion assays in tissue culture as well as live animal infections. These methods have proven useful in not only for identifying strains with the potential to colonize cardiac tissue in infected animals, but should also be useful for the identification of bacterial gene products that serve to enhance cardiac cell invasion and/or result in changes in heart pathology. These methods facilitate the comparison of cardiotropism between multiple strains. For the methods described here, L. monocytogenes 10403S is used as a well-studied representative of a non-cardiotropic strain and the clinical isolate 07PF0776 is used as a representative example of a cardiotropic strain. These two strains were chosen to provide a comparison for bacterial invasion of cardiac cells in vitro and colonization of hearts of infected mice in vivo. The isolate 07PF0776 is a clinical isolate recovered from an interventricular abscess that caused a fatal arrhythmia in an HIV+ patient8. L. monocytogenes isolates may vary in their virulence potential, and given the propensity for Listeria to infect persons with immunosuppression and pregnant women, persons within these populations should exercise caution while assessing different clinical isolates.
1. Storage and Culture Conditions for L. monocytogenes Strains
2. Storage and Culturing Conditions of H9c2 Cardiac Myoblast-like Cells
3. Preparing H9c2 Cells for Invasion Assay
4. Preparing Strains of L. monocytogenes for Invasion Assays
NOTE: All laboratory work is carried out in accordance with CDC Biosafety Level 2 guidelines.
5. Performing the Invasion Assay
6. Preparing Strains of L. monocytogenes for Mouse Infections
7. Inoculating L. monocytogenes into Mice via Tail Vein Injection and Assessing Bacterial Burden within the Liver, Spleen, and Heart
Note: All animal work is carried out in accordance with CDC Biosafety Level 2 guidelines. Mice are typically ordered one week in advance and caged together with 5 animals per cage. Mice are allowed to acclimate to the new laboratory environment for four days before injection. These experiments used 6-8 week old female Swiss-Webster mice that were housed 5 to a cage in a barrier environment and fed a non-restricted diet.
Selected isolates of L. monocytogenes exhibit enhanced invasion of cardiac cells in cell culture and in mouse models of infection. Figure 1 shows an example of how bacterial colonies may appear following spot plating of suspensions on agar media. This method allows accurate assessment of CFUs within a sample without using large numbers of agar media plates. Figure 2 shows an example of a tissue culture-based assay comparing the ability of strain 10403S to invade heart cells with that of strain 07PF0776. More than twice as many 07PF0776 bacterial CFU can be recovered from infected H9c2 cardiac cells following gentamicin treatment in comparison to cells infected with 10403S. Differences of 2 to 4-fold are routinely observed for cardiotropic strains using this assay. Figure 3 shows an example of the recovery of bacteria from the livers, spleens, and hearts of infected mice at 3 days post-infection. The infection of mice with the cardiotropic strain 07PF0776 or strain 10403S results in comparable numbers of bacteria recovered from the livers and spleens of infected mice, however mice infected with 07PF0776 are more likely to yield detectable numbers of bacteria from the heart and to exhibit greater bacterial burdens in this organ.
Figure 1: Example of spot plating technique for determining bacterial CFUs. H9c2 cells grown on glass coverslips and infected with L. monocytogenes were lysed and suspensions were serially diluted using 1:10 dilutions up to a 1:1,000 dilution (left panel). A multichannel pipet was used to pipet 10 ul from each well directly onto a LB agar plate, and the plate was incubated overnight at 37 °C (right panel). The number of bacteria per coverslip are assessed by counting bacterial CFU associated with the appropriate dilution.
Figure 2: L. monocytogenes strain 07PF0776 exhibits enhanced invasion of cardiac cells in tissue culture. Invasion assays were performed in H9c2 cells using an MOI = 100. Graph depicts the average numbers of intracellular bacterial CFUs recovered +/- SE from cells infected with 10403S (black) versus the cardiotropic 07PF0776 strain (blue). ** indicates a significance of p <0.01.
Figure 3: L. monocytogenes strain 07PF0776 exhibits enhanced invasion of the heart in mouse infection models. Animal were inoculated with 10,000 CFU via the tail vein. Infections were allowed to progress for 72 hr, at which point the animals were sacrificed and the livers, spleens, and hearts were collected and processed to determine bacterial CFU per organ. Solid circles represent the CFU obtained from individual mice, with the average value for all animals within a group indicated by a line +/- SE. The percentage values indicate the number of animals containing detectable bacterial CFU within the heart. * indicates a significance of p <0.05.
L. monocytogenes is a widespread and well-characterized human pathogen, capable of causing a number of different disease manifestations15. The bacterium has been previously described for its ability to translocate across barriers, such as the blood-brain-barrier and placental-fetal barriers, in order to reach and colonize the central nervous system and developing fetus, respectively. The in vivo ability of the organism to colonize these tissues is often complemented by an in vitro ability to invade the representative cells in culture that make up the organs targeted. For instance, invasion of epithelial cells in the choroid plexus has been associated with the ability of the organism to colonize the CNS16; and villous trophoblast explants have been used to represent the maternal-fetal barrier17. In this protocol, methods been described that are useful for assessing bacterial invasion of heart cells in culture as well as for comparison of bacterial colonization of the heart for individual isolates relative to colonization of the liver and spleen.
This protocol contains a number of critical steps, but among the most critical are those involving the use of the correct bacterial CFU for either the infection of tissue culture cells grown on coverslips or the infection of animals. If bacterial CFU number is not correctly controlled between different wells and animals then direct comparisons between samples cannot be made. It is important to double check the dilution series used to generate the inocula by direct plating of the final dilutions on media plates in order to guarantee that the bacterial CFU number has been accurately estimated.
The H9c2 cells used in these assays are derived from the lower half of a 13 day embryonic rat heart which included mostly ventricular tissue18. The cells propagate as mononucleated myoblasts and upon reaching confluency in tissue culture flasks or dishes begin to form multinucleated tubular structures. The cells have a generation time of approximately 30 hr18. Serum starvation of H9c2 cells has been associated with differentiation of the cells into skeletal muscle cells, whereas treatment of the myoblasts with 10 nM all-trans retinoic acid has been associated with myoblast differentiation into cardiac myocytes14. This protocol was focused on L. monocytogenes myoblast cell invasion, however the H9c2 cell line is a versatile cell line that could be used to investigate the effects of controlled cell differentiation on bacterial invasion.
The L. monocytogenes strain 07PF0776 was originally isolated from an HIV-infected patient who had a non-resusitatable asystolic arrest due to an invasive L. monocytogenes infection of the heart8. Subsequent analysis of this strain in mouse infection models indicated that it had an enhanced capacity to target and invade cardiac tissue. A limited analysis of additional random isolates of L. monocytogenes suggests that sub-populations of bacterial isolates are capable of infecting the hearts of mice in the absence of any prior damage to cardiac tissue or heart valves8. Interestingly, two of the best characterized L. monocytogenes strains, 10403S and EGD, were found to be poor colonizers of cardiac cells and tissue. Genome sequencing of the 07PF0776 isolate did not reveal the presence of any novel pathogenicity islands or provide evidence of unique gene clusters19; this suggests that 07PF0776 targets cardiac cells for invasion through modification of its existing arsenal of virulence gene products. Preliminary histochemical analysis indicates that 07PF0776 forms abscesses within infected mouse hearts that appear similar to the abscess observed within the original infected human patient (data not shown). Whether other cardiotropic L. monocytogenes isolates induce similar cardiac abscess formation remains to be determined.
The assays presented here can be easily modified to facilitate the examination of different aspects of infection. Individual coverslips can be fixed and stained for either light or fluorescence-based microscopy, tissue culture incubation times can be increased for the measurement and comparison of bacteria intracellular growth rates, tissues and organs can be paraffin embedded and processed for microscopic examination to examine abscess formation and bacterial distribution at the cellular level. When assessing levels of bacterial invasion of tissue culture cells or colonization of host tissues, there are limitations in terms of the minimum amount of bacteria each assay can detect. In vitro invasion assays have a lower limit of detection of approximately 300 CFU per coverslip. Adjusting the volume of water used to vortex the coverslips may enhance detection of low numbers of bacteria, with cell lysis volumes as low as 500 μl proving useful to detect poorly invasive strains. Coverslips may be briefly dipped in sterile water to remove excess gentamicin prior to lysis of host cells in smaller volumes. Volume levels up to 5 ml or greater can be used to properly enumerate highly invasive strains. In the animals, organ homogenates can be generated in volumes of 5 ml or 10 ml of ddH20, with lower volumes being useful to detect lower levels of bacteria, and higher volumes to better enumerate heavily colonized organs. The minimum detection range for infected organs is approximately 100 CFU. If organs are consistently colonized at high levels, consider using a larger volume of water (10 ml) and performing more dilutions within the 96-well plate.
The methods described can be applied to organs and tissues outside of the heart. Invasion assays and mouse infections such as these have been used to assess colonization in a multitude of sites, including the placenta, brain, gallbladder, liver, and intestine. Modifications of the protocols described above can also be made in order to accommodate hyperinvasive and/or hypervirulent strains, and substitution of heart cells with other cell types may be done to assess invasion phenotypes at sites outside of the cardiovascular system. Since different cell types have altered susceptibilities to L. monocytogenes invasion, adjusting parameters such as MOI and incubation times may be necessary in order to accurately recover data from the assays.
The authors have nothing to disclose.
This work was supported by Public Health Service grants AI41816 and AI099339 (N.E.F.) and by F31AI094886-01 (P.D.M.) from NIAID. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the funding sources.
Difco | BHI Broth Base | 237200 | 2KG of Brain Heart Infusion powder (without agar) |
Difco | Agar | 214510 | 2KG of Granulated Agar |
Difco | BHI Agar | 241810 | 2KG of Brain Heart Infusion Powder with 7.5% Agar |
in vitrogen | LB Broth Base | 12975-084 | 2KG of Luria Broth Base Powder (without agar) |
Fisher | Glass Coverslips | 12-545-80 | 12mm glass coverslips |
Falcon | 24-well Tissue Culture Plate | 35-3047 | 24 Well, Plasma-treated Tissue Culture Plate |
Falcon | 14mL Polystyrene tube | 352051 | 14mL Polystyrene tubes |
Falcon | 96-well U-bottom plate | 35-3077 | Non-tissue culture treated 96-well plate |
Corning | 0.05% Trypsin, 0.53 mM EDTA (1X) | 25-052-CI | Stock solution of Trypsin EDTA for tissue culture |
Corning | DMEM (High glucose, high pyruvate) | 15-013-CU | DMEM media without FBS, glutamine, or antibiotics |
Corning | Pen/Strep/Glut Solution | 30-009-CI | Stock mixture of penicillin, streptomycin, and L-glutamine for tissue culture |
Corning | Gentamicin | 30-005-CR | 50mg/mL Stock solution of Gentamicin for tissue culture |
Cellgro (Corning) | L-Glutamine | 25005197 | Stock L-glutamine solution without antibiotics |
Denville | 75cm^2 Flask | T1225 | 75cm^2 tissue culture treated flask |
Denville | 1.5mL microcentrifuge tubes | 2013004 | 1.5mL microcentrifuge tubes |
ATCC | H9c2 Cardiac Myoblasts | CRL-1446 | Rat cardiac myoblasts |
Hyclone | Fetal Bovine Serum | SH30070.63 | Fetal Bovine Serum |