Biochar is a carbon-rich material used as a soil amendment with the ability to sustainably sequester carbon, improve substrate quality and sorb contaminants. This protocol describes the 17 analytical methods used for the characterization of biochar, which is required prior to large scale implementation of these amendments in the environment.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Biochar is a carbon-rich by-product produced during the pyrolysis of organic matter 1. Interest, both publicly and academically, in adding biochar to soils, stems from its ability to improve soil quality and plant growth 2, 3, sustainably sequester carbon 4, and sorb harmful contaminants 2, 3, 5-7 whilst simultaneously offering alternatives for waste management and energy production by pyrolysis.
Biochars are being produced by numerous companies and organizations worldwide via different pyrolysis systems. Materials used for biochar production include (but are not limited to) woodchips, animal manure and construction wastes1. These differences are expected to alter the biochars’ physical and chemical properties and thus their ability to improve substrates, promote long-term stability and increase sorption capabilities. Additionally, during the pyrolysis process the biochar may become unintentionally contaminated with metals, PAHs and PCBs as a result of contaminated feedstocks or inappropriate pyrolysis conditions. Therefore, before biochar can be applied on a large scale to the environment as a soil amendment, careful characterization of the biochar for contaminants, specific surface area, cation exchange capacity, earthworm avoidance and germination and others suggested by the International Biochar Initiative (IBI) must be conducted. In 2013, the first Standardized Product Definition and Product Testing Guidelines for Biochar, which sets standards for biochar physical and chemical characteristics, was published and made publically available.
Research has shown that biochar produced at a commercial greenhouse in Odessa, ON, Canada has the ability to significantly improve plant growth in intensely degraded soils and sorb persistent organic pollutants (POPs) such as PCBs 2, 3. This biochar has been produced from three different feedstocks (i.e. organic matter sources) via a boiler system where the heat generated is used to warm their greenhouse operation during winter months.
This study provides characterization data pertinent to the production of biochar in a biomass boiler, and the use of biochar as a soil amendment. The objective of this study is to thoroughly characterize the physical, chemical and biological characteristics of six biochars according to standards set by the IBI in their Standardized Product Definition and Product Testing Guidelines (Version 1.1) (2013). These characteristics will be linked, where possible, to the performance of each biochar as agricultural amendments and their ability to sorb contaminants.
NOTE: Chemical analyses were conducted at the Analytical Services Unit (ASU) in the School of Environmental Studies at Queen’s University (Kingston, ON). The ASU is accredited by the Canadian Association for Laboratory Accreditation (CALA) for specific tests listed in the scope of accreditation. Other analyses, including greenhouse trials, were conducted at The Royal Military College of Canada (Kingston, ON) in the Department of Chemistry and Chemical Engineering.
1. General Considerations
2. Test Category A: Basic Biochar Utility Properties
3. Test Category B: Toxicant Reporting
4. Test Category C: Biochar Advanced Analysis and Soil Enhancement Properties
A summary of all results including a comparison to the criteria set by the IBI 13 can be found in Tables 1 (summary), 2 (New, High, Low, Third Feedstock and High-2 biochars) and 3 (Old biochar). All biochars and feedstocks used in 2012 and 2013 (Table 2) were well within the criterion set by the IBI and there were little differences among biochars. Old biochar (Table 3), the first biochar submitted for testing, was made from used shipping pallets and construction wastes and was determined to have elevated levels of the metals arsenic, chromium, copper, and lead. Old biochar also had the lowest levels of organic carbon (63.2%) as determined by loss on ignition. This biochar had the highest levels of extractable phosphorus (850 mg/kg) and CEC (34.8 cmol/kg), as well as the highest percentage of fine particles (<0.5 mm, 48%). Old biochar was also the only biochar to fail the germination test (Figure 3) and it was determined that Eisenia fetida (soil invertebrate) significantly avoided the 2.8% Old biochar amendment, whereas they preferred the 2.8% amendment of the New biochar (Figure 2).
Test Category A: Basic Biochar Utility Properties
Biochar production via pyrolysis is essentially the carbonization of biomass. The carbonization process allows for the transformation of structured organic molecules of wood and cellulose materials into carbon, or carbon-containing residues, which are often aromatic in nature 14-18. Carbonization is obtained through the elimination of water and volatile substances from the biomass feedstock, due to the action of heat during the pyrolysis process 19. All of the biochars produced at the commercial greenhouse contained a relatively low moisture percentage (<5%) with the exception of Old biochar. All biochars are categorized by the IBI as Class A (>60%) in terms of their composition of organic carbon as a result of complete carbonization of the feedstock material via pyrolysis. Thus due to the high percentage of organic carbon, all biochars produced have a low percentage of ash (<2.5%), which is the inorganic or mineral component of the biochar 13. Although these low ash biochars do not provide substantial amounts of nutrients directly to the soil as do their high-ash biochar (often made from manures and bones) counterparts; the carbon content of these biochars is much higher and therefore they have higher long-term nutrient retention abilities 20-22.
The hydrogen to carbon ratio (H:C) is a term often used to measure the degree of aromaticity and maturation of the biochar, which has been linked to their long-term stability in the environment 18. For biomass feedstock containing cellulose and lignin, the H:C ratios are approximately 1.5. However, pyrolysis of these materials at temperatures greater than 400 °C is expected to produce biochars with H:C ratios <0.5. It has been reported that an H:C ratio < 0.1 indicates a graphite-like structure in the biochar 23. All biochars in this report have H:C ratios less than 0.02, indicating that these biochars are highly aromatic in nature and will have long-term stability in the environment.
Soil pH is a measure of soil acidity, and unfortunately many agricultural soils in Canada and worldwide are acidic (pH < 7), meaning that they are not ideal for crop growth. Biochars with an alkaline pH (> 7), such as those being produced at the greenhouse, can be added to acidic soils to increase the soil pH to levels that are more appropriate for plant growth.
Another important soil characteristic for plant growth is particle size distribution (PSD). Biochars that have a higher percentage of coarse particles may favorably increase soil aeration and prevent biochar movement into the subsoil over time, thereby increasing the length of time biochar offers benefits to plant growth 24. However, smaller particle sizes are favored for biochars that are being produced for remediation purposes with the intent to sorb contaminants and minimize their bioavailability, as contaminants are more easily able to access pore space for binding 3,25,26. Also smaller particles sizes increases the number of biochar particles per unit volume of soil which is favorable for contaminant sorption27. As in a previous study3, fine particles are defined as those < 0.25 mm and coarse particles as > 0.5 mm. The biochars named New-, High- and Third Feedstock have a high proportion of coarse particles (~98%), and a low proportion of fine particles (~2%). The biochar produced at a slightly lower temperature, had 89% coarse and 11% fine particles sizes. All of these biochars may offer substantial improvements to soil texture and aeration especially in degraded or clay type soils. The Old biochar had a PSD that differed substantially from the others, having 52% coarse and 48% fine particles. A biochar with this PSD may be preferable for use at contaminated sites, where contaminant sorption is the primary focus.
Test Category B: Toxicant Reporting
Biological testing of biochar is important to assess the toxicity (if any) of these materials to soil invertebrates and plants. To date, there is little existing literature on the potential impact of biochar on terrestrial organisms and their associated response, and often the literature that does exist presents conflicting results. Exposure to contaminants may inhibit earthworms ability to perform essential soil functions such as decomposition, nutrient mineralization, and soil structure improvements 28. New biochar showed no detrimental effects on the earthworm Eisenia fetida as assessed by earthworm avoidance, however worms significantly avoided Old biochar (Figure 2). Germination assays are a technique used to evaluate the toxicity of a particular material to plants. Potting soil served as a better control than filter paper as the filter paper often encouraged mold formation. Pumpkin and alfalfa seeds germinated well with 67% ± 12% and 81% ± 6% germination, respectively. Roots also proliferated well with average lengths after seven days being 14 cm ± 0.6 cm and 55 cm ± 8 cm for pumpkins and alfalfa, respectively. As with the earthworm avoidance studies Old biochar showed toxicity to plants and all other biochars evaluated showed no detrimental effects to seed germination as measured by percent germination and root length after seven days (Figure 3).
Although some types of biochar have the potential to sorb organic contaminants and reduce their toxicity in the environment, careful characterization of the biochar is required to ensure that it does not contain harmful contaminants such as PAHs, PCBs, and metals as a result of contaminated feedstocks or pyrolysis conditions. None of the biochars produced at the greenhouse had PAH concentrations exceeding IBI guidelines. Old biochar was determined to have elevated levels of PCBs and the metals arsenic, chromium, copper, and lead, however none of the biochars produced from the other two biomass materials contained metals above IBI guidelines. Old biochar was produced from used shipping pallets and construction wastes which is likely the source of the metal contamination. Although Old biochar would not be suitable for use in agricultural soils or home gardens, all other biochars could be used for these purposes.
Test Category C: Biochar Advanced Analysis and Soil Enhancement Properties
Biochars containing a high concentration of ammonium and nitrate may be applied to agricultural soils to offset the requirements for synthetic fertilizers. However, if biochar contains an excess of these nitrogen compounds then application on a large scale could increase the atmospheric N2O concentration and contaminate drinking water sources with nitrates. None of the biochars studied contained elevated amounts of ammonium or nitrate.
Phosphorus is an essential component for many physiological processes related to proper energy utilization in both plants and animals. Biochars with moderate amounts of available phosphorus will act as important plant fertilizers. In Ontario, soils containing 15–30 mg/kg phosphorus are considered low, 31–60 mg/kg moderate, and 61–100 mg/kg high. Old biochar was highest in available phosphorus at 850 mg/kg and may not be suitable for adding to soils already classified as high in phosphorus. However, all other biochars tested had a much lower amount of available phosphorus and would not be expected to cause problems when added at rates up to 10% (w/w).
The components of biochar (except moisture) that are released during pyrolysis are referred to as volatile matter. These components are typically a mix of short and long chain hydrocarbons, aromatic hydrocarbons with minor amounts of sulfur. Volatile matter was determined via proximate analysis which also determines the moisture and ash content of biochars (section 2.2). The volatile content affects the stability of the material 29, N availability and plant growth 30. In theory, biochars high in volatile matter are less stable and have a higher proportion of labile carbon that provides energy for microbial growth and limits the availability of nitrogen necessary for plant growth. A study by Deenik et al., (2010) considered 35% volatile matter to be high (inducing nitrogen deficiency), and 10% volatile matter to be low. All biochar in this report contained less than 20% volatile matter, and hence would not be expected to limit plant growth. Proximate analysis determination of volatile matter is most important for biochars with low ash concentrations such as those produced at the commercial greenhouse.
Specific surface area (SSA) is a measure of the porosity of a biochar. It includes not only the external biochar surface area, but also the surface area within the pore spaces and is an important characteristic used to predict the ability of a biochar to sorb organic contaminants. Contaminant sorption has been attributed to π-π interactions (attractive, non-covalent binding) between the aromatic ring(s) of the contaminant and those of the biochar 31. Activated carbon (AC) is a charcoal-like material that is treated during its production to maximize its porosity and therefore has higher SSAs than most biochars. Although all the of biochars presented in this report have SSAs in the 300 m2/g range (i.e. much less than that of AC; ~800 m2/g), as reported in Denyes et al., 2012 and 2013, the biochars, Old and New, have both shown significant potential to serve as a soil amendment for the remediation of PCBs.
Cation exchange capacity (CEC) is a measure of the number of cations (positively charged ions) that a soil particle is capable of holding at a given pH. The ability of the soil to hold cations is due to electrostatic interactions with negatively charged sites on the surface of a particle, such as hydroxyl (OH–) and carboxyl (COO–) groups 32, 33. The CEC of the soil can be linked to the ability of the soil to hold nutrients and retain cations from fertilizers which are essential for plant growth. Also, many environmental contaminants such as lead, cadmium and zinc have positive charges; therefore soils with a high CEC may function to prevent the leaching of these contaminants into drinking water sources. Biochars have been reported to increase the CEC of soils, due to the slow oxidation of the biochar surface which increases the number of negatively charged sites, and therefore may reduce fertilizer requirements and immobilize positively charged contaminants in soils 32. Typically, sandy soils have a CEC between 1–5 cmol/kg, loam soils 5–15 cmol/kg, clay type soils >30 cmol/kg and organic matter 200–400 cmol/kg. The methods for determining the CEC of biochar are still in their infancy and therefore should be considered in relative terms. The CEC of the biochars produced at the greenhouse are higher than the CEC of PCB-contaminated soils (Denyes et al., 2012), but lower than compost amended soils.
Figure 1. Earthworm avoidance wheel. The wheels are produced from steel and the worms are allowed to move throughout the compartments via multiple holes which are approximately 5 cm in diameter.
Figure 2. Earthworm avoidance assay of Old and New type biochars. The biochar titled “Old” was produced via construction wastes, whereas the biochar titles “New” was produced from sawdust materials. * indicates a significant difference between unamended potting soil and potting soil amended with 2.8% of either biochar (p < 0.05).
Figure 3. Percent germination of two different plant species. Pumpkin (Cucurbita pepo spp. pepo) and alfalfa (Medicago sativa) were grown in triplicate in various biochars produced at a commercial greenhouse for seven days. Old and New refer to biochars made from different feedstocks, whereas Low and High refer to different temperatures of pyrolysis. * indicates significantly difference from the controls (potting soil and filter paper).
Sample | Feedstock | Pyrolysis Temperature | Organic Matter (LOI) | pH | CEC | PSD | PSD | SSA |
Coarse | Fine | |||||||
°C | % | cmol/kg | % | % | m2/g | |||
Old | 1 | >700 | 63.2 | 9.3 | 34.8 | 51.7 | 48.3 | 373.6 |
New | 2 | 700 | 97.8 | 9 | 16 | 98.7 | 1.3 | 324.6 |
Low Temp | 2 | 500 | 96.7 | 8.7 | 15.9 | 86.2 | 13.8 | 336.9 |
High Temp | 2 | >700 | 97.9 | 8.4 | 11.1 | 98.1 | 1.9 | 419.5 |
Third Feedstock | 3 | 700 | 96.2 | 9.6 | 13.2 | 97.6 | 2.4 | 244.4 |
High Temp-2 | 3 | >700 | 97.1 | 9.1 | 17.1 | 97.9 | 1.9 | 428 |
LOI: Loss on Ignition, CEC: Cation Exchange Capacity, PSD: Particle Size Distribution, SSA: Specific Surface Area |
Table 1. Feedstock type, pyrolysis temperature and physical characteristics of the six biochars.
Requirement | IBI | Biochar | Feedstock Range | Unit | |
Criteria | Range | ||||
Test Category A: Basic Biochar Utility Properties – Required for All Biochars | |||||
Moisture | Declaration | <0.1–4.3 | % | ||
Organic Carbon | Class 1 > 60% | 96.2–97.8 (LOI) | % | ||
Class 2 > 30% | 92.44–97.93(Pro/Ult) | ||||
Class 3 > 10 < 30% | |||||
H:Corg | 0.7 max | 0.01–0.02 | Ratio | ||
Total Ash | Declaration | 1.38–2.26 | % | ||
Total N | Declaration | 0.28–1.06 | % | ||
pH | Declaration | 8.4–9.6 | pH | ||
Particle Size Distribution | Declaration | 86–98 | % Coarse | ||
1.3–14 | % | ||||
Fine | |||||
Test Category B: Toxicant Reporting- Required for All Feedstocks | |||||
Germination | Pass/Fail | Pass | |||
Earthworm Avoidance | Declaration | No Avoidance | |||
Polyaromatic Hydrocarbons (PAHs) | 6–20 | <2.0 | mg/kg | ||
Polychlorinated Biphenyls (PCBs) | 0.2–0.5 | <0.1 | mg/kg | ||
Arsenic | 12–100 | <1.0 | <1.0 | mg/kg | |
Cadmium | 1.4–39 | <1.0 | <1.0 | mg/kg | |
Chromium | 64–1,200 | <2.0 | <2.0–2.6 | mg/kg | |
Cobalt | 40–150 | <1.0 | <1.0 | mg/kg | |
Copper | 63–1,500 | 3.6-6.5 | <2.0–5.9 | mg/kg | |
Lead | 70–500 | <2.0–2.7 | <2.0–8.1 | mg/kg | |
Mercury | 1,000–17,000 | <5.0–294 | ng/g | ||
Molybdenum | 5–20 | <2.0 | <2.0 | mg/kg | |
Selenium | 1–36 | <10 | <10 | mg/kg | |
Zinc | 200–7,000 | 5.6–56.2 | 7.8–30.5 | mg/kg | |
Chlorine | Declaration | mg/kg | |||
Sodium | Declaration | 137-878 | <75-770 | mg/kg | |
Test Category C: Biochar Advanced Analysis and Soil Enhancement Properties- Optional for All Biochars | |||||
Mineral N (Ammonium and Nitrate) | Declaration | <0.2–6.1 | mg/kg | ||
Total Phosphorus | Declaration | 69.5–276 | 52.5–74 | mg/kg | |
Available Phosphorus | Declaration | 9–80 | mg/kg | ||
Volatile Matter | Declaration | 12.47–19.09 | % | ||
Specific Surface Area | Declaration | 244–428 | m2/g | ||
Cation Exchange Capacity | Declaration | 11.1–17.1 | cmol/kg |
Table 2. Summary Criteria and Characteristics for New, High, Low, Third and High-2 Biochars and Feedstocks. All biochars listed in this table are produced from similar feedstocks at the same pyrolysis facility.
Requirement | IBI | Biochar Range | Feedstock Range | Unit |
Criteria | ||||
Test Category A- Basic Biochar Utility Properties – Required for All Biochars | ||||
Moisture | Declaration | 20 | % | |
Organic Carbon | Class 1 > 60% | 63.2 (LOI) | % | |
Class 2 > 30% | ||||
Class 3 > 10 < 30% | ||||
H:Corg | 0.7 max | Ratio | ||
Total Ash | Declaration | % | ||
Total N | Declaration | % | ||
pH | Declaration | 9.3 | pH | |
Particle Size Distribution | Declaration | 52 | % Coarse | |
48 | % Fine | |||
Test Category B: Toxicant Reporting- Required for All Feedstocks | ||||
Germination | Pass/Fail | Fail | ||
Earthworm Avoidance | Declaration | Avoided | ||
Polyaromatic Hydrocarbons (PAHs) | 6–20 | mg/kg | ||
Polychlorinated Biphenyls (PCBs) | 0.2–0.5 | 1.2 | mg/kg | |
Arsenic | 12–100 | 167 | <1.0 | mg/kg |
Cadmium | 1.4–39 | <1.0 | <1.0 | mg/kg |
Chromium | 64–1,200 | 206 | <20 | mg/kg |
Cobalt | 40–150 | 5.3 | <5.0 | mg/kg |
Copper | 63–1,500 | 558 | <5.0 | mg/kg |
Lead | 70–500 | 314 | <10 | mg/kg |
Mercury | 1,000–17,000 | <5.0 | ng/g | |
Molybdenum | 5–20 | <2.0 | <2.0 | mg/kg |
Selenium | 1–36 | <10 | <10 | mg/kg |
Zinc | 200–7,000 | 498 | <15 | mg/kg |
Chlorine | Declaration | mg/kg | ||
Sodium | Declaration | 6460 | <75 | mg/kg |
Test Category C: Biochar Advanced Analysis and Soil Enhancement Properties- Optional for All Biochars | ||||
Mineral N (Ammonium and Nitrate) | Declaration | 2.6 | mg/kg | |
Total Phosphorus | Declaration | mg/kg | ||
Available Phosphorus | Declaration | 850 | mg/kg | |
Volatile Matter | Declaration | % | ||
Specific Surface Area | Declaration | 373.6 | m2/g | |
Cation Exchange Capacity | Declaration | 34.8 | cmol/kg |
Table 3. Summary Criteria and Characteristics for Old Biochar and Feedstock. The biochar listed in this table was produced from construction wastes at the same pyrolysis facility as the biochars listed in Table 2.
All of the methods listed in the protocol have been carefully validated and extensively used for soils. As biochar characterization is still in its infancy, the effectiveness of these methods for the carbon-rich substrate was largely unknown. Hence, although these methods themselves are not novel, their application to routinely characterize biochar is. In terms of quality assurance/ quality control, there were no issues among any of the methods with respect to the blanks being below detection limits or the recoveries being correct for the standard reference materials. This indicates that these methods are suitable to be used for the characterization of biochar and other charcoal-like materials. Many different methods have been used to characterize biochars in the literature20, 34-41 however, as biochar becomes increasingly accepted as a soil additive, routine methods are required.
Cation exchange capacity was the only method in which difficulty arose. The method for calculating the CEC of a sample is dependent on the weight of sample and the concentration of sodium in that given weight. Biochar has a very low density and therefore does not pelletize at the bottom of the tube after centrifugation, as soil does. Therefore, when decanting and discarding the supernatant in steps 6 and 7 of the method (4.4), it is important to not lose any of the biochar sample. Pipetting the solution from the centrifuge was required to avoid any sample loss.
Other analytical methods were easily adapted from soil methods. Ultimate and proximate analysis is specific to biochar and similar products such as coal, and hence is not normally available in laboratories which routinely analyze soils. Another method (ASTM D1762) is available, for the determination of moisture, volatile matter, and ash in charcoal made specifically from wood. This method would also have also been suitable for proximate analysis. When determining loss on ignition for percent organic matter and percent moisture some may choose to perform these analyses at temperatures greater than 420 °C, especially if the biochars in question are produced via very high temperatures of pyrolysis. In the case this particular study 420 °C was sufficient to completely ash all biochars, and although not discussed this temperature was sufficiently high to ash even activated carbon.
Working with biological organisms such as plants and worms can often be challenging. Selecting the appropriate study organisms is of particular importance. The soil invertebrate Eisenia fetida is used frequently as a terrestrial organism model in contamination experiments because this species is capable of surviving at high concentrations of organic contaminants, is very well researched, and is ecologically relevant in many areas of the globe 2, 28, 42-46. Soil invertebrates play an important role in the soil matrix, as they degrade organic matter, cycle nutrients, and transfer water. The plant species’ alfalfa (M. sativa) and pumpkin (C. pepo) were chosen for the germination assays as they are commonly grown in Canada and have been used in our complimentary work on contaminant remediation 2, 3, 47. Greenhouse conditions for germinating seeds need to be carefully monitored to ensure proper functioning of lighting and to avoid extreme temperature fluctuations.
The characterization of biochar is essential to its successful application as measured parameters will indicate the effectiveness of different biochars for different applications (i.e. whether a biochar is appropriate for contaminant sequestration, soil quality improvement, contaminant remediation etc.). Because the methods detailed here are widely available for soil analysis, they are a cost-effective means for characterization of biochars, and should be widely employed prior to large-scale application of biochar in the field.
The authors have nothing to disclose.
This work was funded by the Government of Canada’s Federal Economic Development Agency (FedDev) Applied Research and Commercialization Extension to Queen’s University (Dr. Allison Rutter and Dr. Darko Matovic). Sincerest thank you to Burt’s Greenhouses (Odessa, ON) for providing the biochars. Special thanks to Yuxing Cui of the CBRN Protection Group at RMC and staff of the ASU and Zeeb Lab for their ongoing support.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Biochar | Burt's Greenhouses | All six biochars were produced at Burt's Greenhouses via BlueFlame Boiler system | |
NaOAc | Fisher Scientific | E124-4 | Dissolving 136.08 g of NaOAC.3H2O in 750mL distilled, deionized water (DDI water) |
Acetic Acid | Fisher Scientific | A38-212 | |
Sodium Hydroxide | Fisher Scientific | SS284-1 | |
Isopropanol | Fisher Scientific | A416P4 | 80% IPA- 800 mL IPA with 200 mL DDI water. |
NH4Cl | Fisher Scientific | A649500 | Dissolving 5.35 g NH4Cl into 1 L DDI water. |
Alumminum Drying Pan | Fisher Scientific | 08-732-110 | |
Drying Oven | Fisher Scientific | 508N0024 | 200°C for 2 hours. |
Desiccator | Fisher Scientific | 08-595A | |
Balance | Mettler | 1113032410 | |
Saturating Solution | Fisher Scientific | 06-664-25 | |
Vortex | Barnstead/Thermolyne | 871000536389 | |
Centrifuge | International Equipment Company | 24372808 | 3000 g for 5 mins. |
Rinsing Solution | Fisher Scientific (Ricca Chemistry Company) | 06-664-24 | |
Conductivity Meter | WESCAN | 88298 | |
Replacing Solution | Fisher Scientific | 06-664-24 | |
ICP-AES | Varian | EL00053841 | |
ASAP 2000 Surface Area Analyser | Cavlon | 885 | Degassing at 120°C for a minimum of 2 hours. |
Muffle Furnace | Fisher Scientific | 806N0024 | Heat for 16 hours covering at 420°C. |
pH Meter | Fisher Scientific | 1230185263 | |
Sieve | Fisher Scientific | 2288926 | 4.7 mm sieve being at the top. |
Sieve Skaker | Meinzer II | 0414-02 | Shake for 10 min. |
Sodium Sulphate | VWR | EM-SX0761-5 | |
Ottawa Sand | Fisher Scientific | S23-3 | |
Soxhlet Apparatus | Fisher Scientific (Pyrex) | 09-557A | 4 hours at 4–6 cycles per hour. |
DCBP | Suprlco Analytical | 48318 | |
Dichloromethane | Sigma Aldrich | 40042-40855-U | |
6890 Plus Gas Chromatograph Micro 63 Ni ECD | Agilent | US00034778 | |
Helium | AlphaGaz | SPG-NIT1AL50SMART | |
Nitrogen | AlphaGaz | SPG-HEL1AL50SMART | |
Mortor and Pestle | Fisher Scientific (CoorsTeh) | 12-948G | |
Nitric Acid | Fisher Scientific | 351288212 | |
No. 40 Filter Paper | Fisher Scientific (Whatman) | 09-845A | |
Quartz/Nickel weigh boats | Fisher Scientific | 11-474-210 | |
DMA-80 | ATS Scientific | 5090264 | |
98-99% Formic Acid | Sigma Aldrich | 33015-1L | 1L volumetric filled to 750 mL with DDI water add 20 mL formic acid and fill to volume with DDI water. |
Sonicator | Fisher Sientific | 15338284 | |
Rotating Shaker | New Brunswick Scientific (Innova 2100) | 14-278-108 | 1 hour at 200 rpm. |
No. 42 Filter Paper | Fisher Scientific (Whatman) | 09-855A | |
WhirlPacks | Fisher Scientific | R55048 | |
Potassium Dihydrogen Orthophospahte | Fisher Scientific | 181525 | |
2M KCl | Fisher Scientific | P282100 | |
Plastic Vials | Fisher Scientific | 03-337-20 | |
Ammonium Chloride | Fisher Scientific | PX05115 | Allow to warm up to room temperature |
Colour Reagent | Fisher Scientific | 361028260 | Allow to warm up to room temperature |
Colorimeter | Fisher Scientific | 13-642-400 | Turn on to let the lamp warm up and run for 5 minutes. |
ASEAL Auto Analyzer 2 | SEAL | 4723A12068 | |
Liquified Phenol | Fisher Scientific | MPX05115 | Alkaline Phenol- Measure 87 mL of liquefied phenol into 1-L volumetric filled 2/3 with DDI water. Add 34 g NaOH, make up to volume with DDI water. |
NaOH | Fisher Scientific | S318-3 | |
Commercial Bleach | Retail Store | Hypochlorite Solution- using 100-mL graduated cylinder measure 31.5 mL of commercial bleach and fill to 100 mL with DDI water. | |
NaOH Pellets | Fisher Scientific | S320-1 | |
Disodium EDTA | Sigma Aldrich | E5124 | |
Sodium Hyprchlorite | Fisher Scientific | SS290-1 | |
Triton (10%) | Fisher Scientific | BP151-100 | |
Sodium Nitroprusside | Fisher Scientific | S350-100 | |
Ammonium Salts | Fisher Scientific | A637-10 | |
Phenoxide | Fisher Scientific | AC388611000 | |
Eisenia Fetida | The Worm Factory | ||
Spade | Retail Store | ||
Bucket | Retail Store | ||
Potting Soil | Retail Store | ||
Avoidance Wheel | Environment Canada | Constructed by a modified design from Environment Canada’s Acute Avoidance Test. | |
Alumminum Foil | Fisher Scientific | 01-213-100 | |
Petri Dishes | Fisher Scientific | 08-757-11 | 8.5 cm in diameter. |
Pumpkin Seeds | Ontario Seed Company (OSC) | 2055 | |
Alfalpha Seeds | Ontario Seed Company (OSC) | 6675 | |
Centrifuge Tubes (30mL) | Fisher Scientific | 22-038-906 | |
Beakers (50mL) | Fisher Scientific (Pyrex) | 02-540G | Oven dry at 105oC. |
Beakers (30mL) | Fisher Scientific (Pyrex) | 20-540C | |
Erlenmeyer Flasks (125mL) | Fisher Scientific (Pyrex) | S76106C | |
Volumetric Flask (100mL) | Fisher Scientific (Pyrex) | 10-211C | |
Estuarine Sediment | National Insititute of Standards | 1546A | Standard Reference Material |
Bleach | Clorox Ultra (5-10% sodium hypochlorite) |