Detailed instructions are provided on how to train rats to voluntarily dive underwater through a 5 m long Plexiglas maze. Because the brains of rats have been very well characterized, voluntarily diving rats may help elucidate the central pathways of the mammalian diving response.
Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the mammalian diving response.
The diving response consists of a suite of autonomic reflexes seen in animals of all vertebrate classes 1. In response to submersion under water, this reflexly-induced response consists of apnea, bradycardia and an alteration of blood flow that maintains flow to the heart, brain and exercising muscles while limiting flow to viscera and non-exercising muscles 2. Many of the metabolic and cardiorespiratory aspects of the mammalian diving response have been well investigated 2,3, including those in humans 4,5. However, what has been relatively lacking, until recently, is investigation of the central integrative aspects of the diving response. What happens within the brainstem, and what is the neuronal step-by-step pathway, that connects afferent inputs to efferent outputs during this autonomic reflex? Answering these questions will require an appropriate animal model 6. An adage in comparative physiology, the Krogh principle 7, is that for every research question there is some animal of choice on which the problem can be most conveniently studied. A most appropriate animal for studying the central aspects of the diving response is the rat 6,8. In large part this is due to the fact that the brains of rats have been very well characterized, both anatomically and functionally, and many rat brain atlases are available 6. Additionally the rat is particularly useful in cardiorespiratory research, because the physiology of the rat is well known across all major organ systems, and the rat is well regarded as an animal model in systems biology 6. Finally, the laboratory rat is the domesticated version of the wild Rattus norvegicus, an animal that routinely swims and dives underwater 6. Based on these considerations, the rat is a good choice for studies investigating the central aspects of the mammalian diving response. In comparison, using marine animals to investigate the central aspects of the mammalian diving response would be much more difficult. This is due in large part to marine animals having comparatively large and non-uniformly sized brains, and the relative difficulty and high cost of housing these animals.
Rats have previously been used to investigate many aspects of the mammalian diving response, primarily in situations involving forced underwater submergence 9-12. However many studies in marine and aquatic animals have shown that there can be a differential response to diving based upon whether the submergence was forced or voluntary 2,13. Diving animals may show an extremely intense bradycardia during forced diving but a much less intense bradycardia during voluntary diving. The “stress” of forced submergence can significantly change the cardiovascular responses of diving in many animals 14. Small rodents such as muskrats also show a more intense diving response during forced submergence than during voluntary diving 15,16. Thus, if rats are to be used to investigate the central aspects of the mammalian diving response, investigators should be aware that a rat forcibly submerged underwater may produce a response different from that of a voluntarily diving rat.
The goal of this article is to provide detailed instructions on how to train rats to voluntarily dive underwater. These procedures are not technically difficult, but can be time-consuming. The training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence. This voluntary diving technique should minimize activation of central stress pathways and thus better allow investigation of the central aspects of the diving response. By itself, training rats to voluntarily dive underwater generates no data that can be used to investigate the central aspects of the mammalian diving response. Therefore examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic dive training may need to be modified to accommodate theses other techniques, are also provided.
在他们的野性表格可老鼠做利用半水生环境,而且会经常潜入水下,而觅食6。因此,这是不是太奇怪,老鼠可以很容易训练自愿潜水水下。所描述的训练过程可以持续长达6周,这将带来新断奶的大鼠在大多数成年大鼠脑图谱中使用的主体大小(〜300克)。因而从这些受过训练的动物的大脑将更加容易地比得上在这些图谱确定的解剖结构。
之后被放置在起步区最老鼠?…
The authors have nothing to disclose.
通过研究和赞助节目的中西部高校办公室资助研究的支持。还要感谢的中西部大学动物基金和埃里克·沃伦。
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
1 in internal diameter tubing | Fisher | 14-169-63 | Used to fill or drain tank |
N95 mask – Moldex #2300N Series | Fisher | 19-003-246D | Used to limit inhalation of rat allergens |
Plexiglas rodent restraint device (Economy flat bottomed restrainer) | Braintree | FB-M/L | For forced dives |
Telemetric transmitters | DSI | Model PA-C40 (270-0040-008) | Used to transmit pulsatile arterial blood pressure |
Hand-held antenna wand | DSI | Model RLA 3000 (272-5007) | Used to ensure radio antenna is near to transmitter while rat is negotiating underwater maze |
Intramedic PE50, 0.023" ID | Fisher | 14-170-12B | Used as trailing arterial cannula |