Scavengers have potential to translocate infectious transmissible spongiform encephalopathy prions in their feces to disease-free areas. We detail methods used to determine if mouse-adapted scrapie prions remain infectious after passage though the digestive tract of American crows (Corvus brachyrhynchos), a common consumer of dead animals.
Infectious prion (PrPRes) material is likely the cause of fatal, neurodegenerative transmissible spongiform encephalopathy (TSE) diseases1. Transmission of TSE diseases, such as chronic wasting disease (CWD), is presumed to be from animal to animal2,3 as well as from environmental sources4-6. Scavengers and carnivores have potential to translocate PrPRes material through consumption and excretion of CWD-contaminated carrion. Recent work has documented passage of PrPRes material through the digestive system of American crows (Corvus brachyrhynchos), a common North American scavenger7.
We describe procedures used to document passage of PrPRes material through American crows. Crows were gavaged with RML-strain mouse-adapted scrapie and their feces were collected 4 hr post gavage. Crow feces were then pooled and injected intraperitoneally into C57BL/6 mice. Mice were monitored daily until they expressed clinical signs of mouse scrapie and were thereafter euthanized. Asymptomatic mice were monitored until 365 days post inoculation. Western blot analysis was conducted to confirm disease status. Results revealed that prions remain infectious after traveling through the digestive system of crows and are present in the feces, causing disease in test mice.
Transmissible spongiform encephalopathies (TSE) are fatal infectious neurodegenerative disorders that affect wildlife, domestic animals, and humans. The infectious agent of TSE diseases appears to be misfolded or pathogenic isoforms (PrPRes) of prion proteins1. Animal TSE diseases include chronic wasting disease (CWD) in mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus), and moose (Alces alces); scrapie in sheep and goats; bovine spongiform encephalopathy (BSE) in domestic cattle; transmissible mink encephalopathy in farmed mink; feline spongiform encephalopathy in cats; exotic ungulate spongiform encephalopathy in exotic zoo ruminates of the family Bovidae; and spongiform encephalopathy in nonhuman primates8. The single human TSE disease, variant Creutzfeldt-Jakob disease, is rare and thought to be acquired by consuming PrPRes-contaminated food9. Similarly, BSE can infect humans if contaminated beef is consumed10. Of all the TSE diseases, scrapie and CWD are the only two with self-sustaining epidemics and sources for infection are presumed to be from animal to animal2,3,11 as well as from environmental sources4-6. Research suggests that most TSE diseases require notable extended incubation periods from natural exposure events of PrPRes material to manifestation of clinical signs2-4,6,8 and apparent species barriers minimize, but do not eliminate the potential for, interspecies transmission12-14.
Identifying mechanisms for the spread of infectious prion (PrPRes) material is extremely important for answering questions about how TSE diseases move across the landscape. Experimental investigations have suggested that insects15,16, poultry and pigs17, and American crows (Corvus brachyrhynchos)7,18 are passive carriers or dispersers of PrPRes material. Passage of PrPRes material through the digestive system of crows has recently been documented, demonstrating the role they may play in dispersal of TSE diseases7. These results make it plausible that crows, a scavenger, could encounter, consume, and transport infectious material via feces deposition, to disease-free areas.
The procedures we demonstrate here were used to document passage of PrPRes material through the digestion system of crows and will greatly facilitate the application of these methods to other scavenger and carnivore species-specific models in related future research. In this study conventional methods were used to investigate an unconventional means of trafficking PrPRes material, which could contribute to the spread and overall burden of PrPRes material.
Our protocol is adapted from one we previously published7. All procedures involving animals were approved by the Institutional Animal Care and Use Committee of the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services (WS), National Wildlife Research Center (NWRC).
1. Crow Gavaging
2. Mouse Inoculation
Treatment Group | Number of Animals | |
Group 1 | Scrapie + Crow Feces | 100 |
Group 2 | Scrapie – Crow Feces | 25 |
Group 3 | Scrapie + Mouse Brain | 10 |
Group 4 | Scrapie – Mouse Brain | 5 |
Table 1. Scrapie status of inoculum (positive +, negative -) and number of animals used7.
3. Mouse Monitoring
The procedures used demonstrate that the digestive system of crows does not eliminate PrPRes infectivity 4 hr after oral gavage of scrapie brain homogenate7. All twenty crows that were gavaged with PrPRes material subsequently transmitted PrPRes material via feces to mice. Diseased mice were identified by manifestation of clinical mouse-scrapie signs and disease confirmation was completed by Western blot analysis.
Investigation of the retention time of material ingested by crows revealed passage time through the alimentary tract for a gavaged crow to be 4 hr, based on the presence of dye in feces (Figure 1). All feces were collected with disposable pipettes and pooled for each crow (Figure 2). Acute toxicity from untreated crow feces occurred when raw fecal supernatant was injected IP into pilot test mice. By treating fecal inoculate with penicillin and streptomycin, UV light, and sonication we alleviated this problem.
All mice inoculated with either scrapie-positive mouse brain (9/9) or feces from scrapie-inoculated crows (66*/84) developed clinical signs and tested positive by Western blot analysis (Figure 3), illustrating that scrapie readily passed through the digestive system of crows and caused disease. *Eighteen mice died within 3 days of inoculation, likely due to toxicity. All but one (1/23) scrapie-negative inoculated mice were negative by Western blot analysis. We hypothesize that this mouse was inadvertently inoculated with scrapie-positive crow feces instead of feces from a scrapie-negative crow.
Figure 1. Crow manually restrained and orally gavaged with 5 ml of whole egg mixed with blue dye (A) and blue/green-stained feces 4 hr post gavage (B). Click here to view larger image.
Figure 2. Crow feces collection with pipette prior to homogenization. Click here to view larger image.
Figure 3. Representative SDS-Page Western blot of mouse brain from bioassay. NBH- normal mouse brain homogenate, scrapie-negative, TX cage 4 – brain from a mouse inoculated with feces from a scrapie-inoculated crow. With (+) and without (-) PK (proteinase K) digestion. Click here to view larger image.
We demonstrate a procedure to document passage of PrPRes material through the digestive system of crows. We used conventional methods to determine if crows have the ability to translocate PrPRes material to disease-free geographic areas. Others have evaluated resistance of PrPRes to ruminant19-21 and rodent22,23 digestive fluids, both of which failed to eliminate it. Future application of these techniques should be applied to other carnivores24 as they could also potentially encounter PrPRes material in carrion and transport this material across the landscape facilitating the spread of prion diseases.
We added blue food coloring to our scrambled egg 'pseudo brain' material, providing a simple way to assess approximate passage time of homogenized mouse brain through the alimentary tract of crows. We advise others considering this technique to first inspect existing feces color of study animals and then use food coloring that is most contrasting. This will allow for easy identification of food color stained material that has passed through study animals. We chose to use food coloring to estimate passage time, but others have used florescent pigment25, ferric oxide26, colored plastic markers27, and colored metallic flakes (i.e. glitter)28.
Minimizing the threat of a secondary microbial infection from crow feces and correctly inoculating mice are key starting points for mouse-prion studies that require long incubation periods. If either of these considerations are violated, early mouse mortality is likely to result.
Another possible tool for investigation is serial protein misfolding cyclic amplification or sPMCA to evaluate crow fecal samples over time to establish how long after oral gavage crows pass infectious material, without the need for a mouse bioassay. Recent advances in PMCA fecal analysis by Pulford, et al. indicate that amplification of minute levels of prions can be detected in mammal feces29, suggesting PMCA might also be a useful tool for evaluating avian feces. The mouse bioassay and sPMCA approach could be used to evaluate residual infectivity in feces of crows gavaged with CWD-infected material. A cervidized transgenic mouse line would be required and intracerebral versus intraperitoneal inoculation would give more rapid results.
Avian scavengers, such as crows, vultures, and eagles, could play a role in the spread of TSE diseases, namely CWD in North America. These species could consume CWD-positive tissue from diseased carcasses or entrails (in the case of hunter-killed cervids) and translocate infectious material in their feces to CWD-free areas or populations of cervids. As the practice of feeding grain to cervids, in wild or captive settings, attracts crows which can defecate on the food source and be inadvertently consumed by cervids, is thus a high-risk practice (VerCauteren personal observation). Further, though the odds of CWD-free animals encountering PrPRes material through random feces deposition may be low, areas where crows and thus their feces are concentrated, like below communal roosting sites, could become of high-risk areas for disease transmission since prions are so persistent in the environment30,31.
The authors have nothing to disclose.
We would like to thank S. Werner for providing the crows used in this study and USDA, APHIS, WS, NWRC animal care staff for animal care and monitoring. Mention or use of a product does not imply USDA endorsement. Funding for this study was provided by USDA, APHIS, Veterinary Services.
RML Chandler strain mouse-adapted scrapie | Rocky Mountain Laboratories | ||
RC57BL/6 mice | Hilltop Lab Animals | ||
American crows | wild captured | ||
Pen/Strep | Invitrogen | 15140-122 | |
Phosphate buffered Saline | Invitrogen | 70011-044 | |
Sonicator | Misonix | ||
Proteinase-K solution | Roche | 3115887001 | |
Loading buffer | Invitrogen | NP0007 and 0009 | |
Bis-tris SDS PAGE 12% gel | Invitrogen | NP0342 | |
Immobilon PVDF membrane | Millipore | 1SEQ00010 | |
Tween 20 | Sigma Aldrich | P2287 | |
Bullet blender homogenizer | Braintree Scientific | BBX24B | |
2.3 mm Zirconia/silica beads | BioSpec Products | 11079125Z | |
Bar224 anti-PrP monoclonal antibody | Cayman Chemical | 10009035 | |
Superblock | Thermo Scientific | 37517 | |
chemiluminescent substrate | Millipore | WBKLS0500 | |
G-box gel documentation system | Syngene |