Here we report an experimental technique of fluorescence intravital microscopy to visualize heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombus formation in live mice. This microscopic technology will be valuable to study the molecular mechanism of vascular disease and to test pharmacologic agents under pathophysiological conditions.
Interaction of activated platelets and leukocytes (mainly neutrophils) on the activated endothelium mediates thrombosis and vascular inflammation.1,2 During thrombus formation at the site of arteriolar injury, platelets adherent to the activated endothelium and subendothelial matrix proteins support neutrophil rolling and adhesion.3 Conversely, under venular inflammatory conditions, neutrophils adherent to the activated endothelium can support adhesion and accumulation of circulating platelets. Heterotypic platelet-neutrophil aggregation requires sequential processes by the specific receptor-counter receptor interactions between cells.4 It is known that activated endothelial cells release adhesion molecules such as von Willebrand factor, thereby initiating platelet adhesion and accumulation under high shear conditions.5 Also, activated endothelial cells support neutrophil rolling and adhesion by expressing selectins and intercellular adhesion molecule-1 (ICAM-1), respectively, under low shear conditions.4 Platelet P-selectin interacts with neutrophils through P-selectin glycoprotein ligand-1 (PSGL-1), thereby inducing activation of neutrophil β2 integrins and firm adhesion between two cell types. Despite the advances in in vitro experiments in which heterotypic platelet-neutrophil interactions are determined in whole blood or isolated cells,6,7 those studies cannot manipulate oxidant stress conditions during vascular disease. In this report, using fluorescently-labeled, specific antibodies against a mouse platelet and neutrophil marker, we describe a detailed intravital microscopic protocol to monitor heterotypic interactions of platelets and neutrophils on the activated endothelium during TNF-α-induced inflammation or following laser-induced injury in cremaster muscle microvessels of live mice.
1. Preparation of Intravital Microscope (Figure 1A)
2. Preparation of Cremaster Muscle for Intravital Microscopy (Figure 1B)
3. Intravital Microscopy for TNF-α-induced Vascular Inflammation
4. Data Analysis for the Venular Inflammation Model
5. Intravital Microscopy for Laser-induced Arteriolar Thrombosis
5-1 Calibration of ablation laser
5-2 Laser-induced arteriolar thrombus formation
6. Data Analysis for the Arteriolar Thrombosis Model
Using a detailed intravital microscopy analysis, heterotypic platelet-neutrophil interactions on the activated endothelium were visualized by infusion of fluorescently-labeled antibodies against a platelet (CD42c) or neutrophil marker (Gr-1) into live mice.
In a model of TNF-α-induced venular inflammation, most rolling neutrophils were stably adhered to the endothelium presumably by interaction of activated β2 integrins with ICAM-1 during the recording period (3-4.5 hr after injection of TNF-α, Figure 2A).8 Rolling and adherent neutrophils were already present before the video capture began due to the TNF-α-induced endothelial cell activation. The number of rolling and adherent neutrophils on the inflamed endothelial cells was 0.25 ± 0.05 cells per minute and 18.5 ± 0.7 cells per 5 min, respectively (Figures 2B and 2C). Most neutrophils were adhered to the activated endothelium for the duration of video capture (1-1.5 hr), and there was only a minimal decrease in adherent cells along with a minimal increase in rolling cells (data not shown). We found that most platelets adhere to adherent and crawling neutrophils rather than the inflamed vessel wall (Figure 2A, Video 1). Platelet thrombi accumulated and embolized repeatedly for the duration of the video capture. The integrated fluorescence signal associated with adherent platelets was shown in Figure 2D.
Utilizing the laser-induced arteriolar thrombosis model, we were able to examine and characterize the heterotypic interaction of platelets and neutrophils at the site of arteriolar wall injury. In this model, the thrombus size peaked around 100 sec after laser injury, followed by a series of rapid small embolization for the next 2-3 min (data not shown).9,10 Five minutes after laser injury, the size of platelet thrombus remained relatively constant during imaging (5-25 min after laser injury, Figures 3A-3C) and neutrophils rolled on and adhered to the platelet thrombus (Figures 3A-3B, Video 2). The fluorescence signal from the circulating platelets was negligible in comparison with that from the platelet thrombus. The number of rolling and adherent neutrophils was 21.5 ± 3.0 and 1.6 ± 0.4 cells over 20 min, respectively (Figures 3D-3E). Initial rapid rolling of neutrophils occurred on the endothelial cells. Once neutrophils contacted the platelet thrombus, the rolling velocity of neutrophils on a platelet thrombus was changed with a range of 8.2 ± 1.1 μm per second (Figure 3F), which is mediated by interaction of P-selectin and PSGL-1.11
Figure 1. Schematic of the intravital microscope system (A) and preparation of the cremaster muscle microvessel (B).
Figure 2. Heterotypic interactions of platelets and neutrophils during the TNF-α-induced venular inflammation in live mice. Platelets and neutrophils were detected by Dylight 488-conjugated anti-mouse CD42c and Alexa Fluor 647-conjugated anti-mouse Gr-1 antibodies, respectively. (A) Representative binarized images of the appearance of fluorescence signals associated with neutrophils (red) and platelets (green) over 180 sec. Arrow shows direction of blood flow. Bar = 10 μm. (B-C) The number of rolling (cells/minute) and adherent neutrophils (cells/5 min) on inflamed endothelial cells is shown. Data represent the mean ± SEM of the 30 different venules in 4 wild-type mice. (D) Median integrated fluorescence signal of platelets (F platelet) is plotted as a function of time. No signal was detected with Dylight 488-conjugated control rat IgG (data not shown).
Figure 3. Heterotypic interaction of neutrophils with a platelet thrombus at the site of laser-induced arteriolar injury in live mice. Platelets and neutrophils were detected as described in Figure 2. (A) A single neutrophil (red, a yellow arrow) rolls over the platelet thrombus (green) while a second neutrophil (red, a white arrow) rapidly rolls over arteriolar endothelial cells, shown over 5 sec. (B) A single neutrophil (red) rolling over and adhering to a platelet thrombus (green) shown over 15 sec. The arrowhead shows rolling and adherent neutrophils. Bar = 10 μm. The thick, grey arrow shows the direction of blood flow. (C) Median integrated fluorescence signal of platelets (F platelet) is plotted as a function of time. (D-E) The number of rolling and adherent neutrophils on the platelet thrombus is shown (cells/20 min). (F) The rolling velocity of neutrophils over the platelet thrombus. Data represent the mean ± SEM of the 14 thrombi in 5 wild-type mice.
Here we describe a detailed protocol for real-time fluorescence intravital microscopy to visualize heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombosis. Previously, similar fluorescence microscopic approaches were reported to study the molecular mechanism of thrombus formation and vascular inflammation.8,12 Since the heterotypic cell-cell interaction could be important for vaso-occlusion at the injury site, this technology will be a valuable tool for studying the cellular and molecular mechanisms of vascular disease. The advantage of real-time imaging technology is to monitor immediate and subsequent interactions of intravascular cells on the activated/damaged endothelium under inflammatory and thrombotic conditions. Further, our microscopic system could be utilized in studying heterotypic interactions between circulating tumor cells and endothelial or blood cells using fluorescently-labeled tumor cells or antibodies against tumor cell markers such as human epithelial cell adhesion molecule (EpCAM).13,14 Instead of using fluorescently-labeled antibodies, this microscopy could also be performed with transgenic mice expressing fluorescent proteins in a specific cell type such as CD41-EYFP+ megakaryocytes.15
Using the intensity of fluorescently-labeled antibodies, we could determine the kinetics of platelet thrombus formation and molecular expression on activated intravascular cells following vessel injury. However, most antibodies used in this purpose inhibit the antigen function which may result in unexpected outcomes. Therefore, the experiment should be carried out with special care to optimize the concentration at which the antibody gives the sufficient fluorescence signal by its binding to the antigen without affecting the antigen function. In addition, the antibody specificity is another issue. It is known that subpopulations of dendritic cells and monocytes express low levels of Gr-1.16
Nevertheless, we found that monocytes are only 3-5% of rolling leukocytes during acute inflammation and thrombus formation, as determined by a fluorescently-labeled antibody against mouse F4/80 that is expressed exclusively in monocytes and dendritic cells (data not shown). Therefore, most rolling and adherent leukocytes during TNF-α-induced venular inflammation and laser-induced arteriolar thrombosis would be neutrophils.
In this report, we used two mouse models of vascular disease. Although we understand that no animal model can recapitulate human disease conditions, the work carried out in microvessels of live mice using this technology will have a direct relevance to human disease and will be easily translatable to better treatment of thrombo-inflammatory diseases.
The authors have nothing to disclose.
This work was supported in part by grants from National Institutes of Health (P30 HL101302 and RO1 HL109439 to J.C.) and American Heart Association (SDG 5270005 to J.C.). A. Barazia was supported by a T32HL007829 NIH training grant.
Name of Reagent/Material | Company | Catalog Number | Comments |
NaCl | Fisher Scientific | 7647-14-5 | |
KCl | Sigma-Aldrich | 7447-40-7 | |
CaCl2 2H2O | Sigma-Aldrich | 10035-04-8 | |
MgCl2 6H2O | Fisher Scientific | 7791-18-6 | |
NaHCO3 | Fisher Scientific | 144-55-8 | |
0.9% NaCl Saline | Hospira | 0409-4888-10 | |
Ketamine | Hospira | 0409-2051-05 | |
Xylazine | Lloyd | ||
Intramedic Tubing (PE 90) | BD Diagnostics | 427421 | |
Intramedic Tubing (PE 10) | BD Diagnostics | 427401 | |
Murine TNF-α | R&D Systems | 410-MT | |
Dylight 488- labeled rat anti-mouse CD42b antibody | Emfret Analytics | X488 | |
Alexa Fluor 647-conjugated anti-mouse Ly-6G/Ly-6C (Gr-1) Antibody | BioLegend | 108418 | |
NESLAB EX water bath/circulator | Thermo-Scientific | ||
Olympus BX61W microscope | Olympus | ||
TH4-100 Power | Olympus | ||
Lambda DG-4 | Sutter | ||
MPC-200 multi-manipulator | Sutter | ||
ROE-200 stage controller | Sutter | ||
C9300 high-speed camera | Hamamatsu | ||
Intensifier | Video Scope International | ||
Ablation Laser | Photonic Instruments, Inc. | ||
SlideBook 5.0 | Intelligent Imaging Innovations |