Tissue-specific analysis of a hair follicle regeneration model using lentivirus to mediate gain- or loss-of-function.
Hair follicle morphogenesis, a complex process requiring interaction between epithelia-derived keratinocytes and the underlying mesenchyme, is an attractive model system to study organ development and tissue-specific signaling. Although hair follicle development is genetically tractable, fast and reproducible analysis of factors essential for this process remains a challenge. Here we describe a procedure to generate targeted overexpression or shRNA-mediated knockdown of factors using lentivirus in a tissue-specific manner. Using a modified version of a hair regeneration model 5, 6, 11, we can achieve robust gain- or loss-of-function analysis in primary mouse keratinocytes or dermal cells to facilitate study of epithelial-mesenchymal signaling pathways that lead to hair follicle morphogenesis. We describe how to isolate fresh primary mouse keratinocytes and dermal cells, which contain dermal papilla cells and their precursors, deliver lentivirus containing either shRNA or cDNA to one of the cell populations, and combine the cells to generate fully formed hair follicles on the backs of nude mice. This approach allows analysis of tissue-specific factors required to generate hair follicles within three weeks and provides a fast and convenient companion to existing genetic models.
1. Prepare 0 to 2 days Old Newborn Mice for Skin Dissection
2. Dissect Mouse Skin
3. Wash Skin and Incubate with Dispase Solution
4. Separate Dermis and Epidermis
5. Dissociate Primary Mouse Dermal Cells (mDCs) from Minced Tissue
6. Dissociate Primary Keratinocytes (KC) from Minced Tissue
7. Infect Primary Cells with Lentivirus Containing shRNA or cDNA
On day of infection dissect another set of mouse skins to prepare fresh, untreated primary KCs or mDCs to combine with virus-infected cells on day of grafting (step 9).
8. Prepare Infected Cells for Grafting
9. Create Wound Bed and Fix Chamber onto Back of nu/nu Mouse
A day before grafting, sterilize surgical tools with autoclave and sterile silicon chambers by soaking in 70% ethanol. Replace the 70% ethanol with sterile PBS before using the chambers.
10. Remove Chamber After 7-9 Days
11. Examine Mouse for Hair Growth
Procedure Outline
Day 1 (2-3 hr): Sacrifice newborn pups, remove skin, and leave on dispase at 4 °C overnight.
Day 2 (2-3 hr): Isolate primary cells from skin and plate at recommended cell density.
Day 3 (3-4 hr): Infect cells with lentivirus. Remove skin from another set of newborn pups and leave on dispase at 4 °C overnight.
Day 4 (6-8 hr): Isolate primary cells from skin, count, and leave on ice. Recover lentivirus-infected cells by trypsinization and centrifugation, count, and combine 7-10 x 106 dermal cells and keratinocytes into 50-100 μl of PBS per graft. Create wound bed on mouse, attach chamber, and apply cell mixture to wound bed.
Alternative Procedure Outlines
Alternative procedure outlines will shorten the procedure from four days to three.
In Figure 1 we show the result of dermal-specific lentiviral shRNA knockdown of Smoothened (Smo), a critical Shh signaling component, in a 3-week old regenerative hair graft. Control grafts using lentiviral vector alone show robust hair growth (Figure 1A). By contrast, dermal-specific knockdown of Smo results in loss of hair growth (Figure 1B). Hematoxylin and eosin stain depicts the stage of hair follicles in control and experimental conditions (Figure 1C, D). The hair growth phenotype from similar treatments can be variable among experiments, including the positive control with lentiviral vector alone infection. Therefore positive control grafts should always be included in every experiment as a reference as 30% of grafts can fail as a result of scarring or incomplete attachment of grafts. In the case of testing an interaction between two factors such as overexpressing cDNA of one factor to rescue shRNA-mediated knockdown of another factor, one should always include knockdown alone grafts to manifest the loss-of-function result in each experiment. This will provide a necessary range to determine how a particular gene perturbs the hair follicle regeneration pathway and how two genes interact.
Removal of the chamber (Figure 2A) must be done with care. The newly formed graft should be slightly opaque with a dull surface (Figure 2B). The graft may stick to the chamber, so gently lifting one side is important to make sure the graft remains attached to the wound bed. The graft is quite stable after three days and should present little difficulty when removing the dressing. Robust hair growth should be observed after three weeks (Figure 2C). Omitting either mDCs or KCs will result in a recovered wound site without any hair (Figure 2D)11. Cell death or cell loss in one of the cell types also results in no hair, in contrast to reduced hair regeneration in dermal-Smo knockdown as shown in Figure 1B.
To ensure a successful assay, it is critical to achieve greater than 90% viral infection of cells with appropriate overexpression or knockdown efficiency before grafting. Due to the time constraints of the grafting procedure, we recommend trouble shooting viral infection efficiencies before starting a grafting experiment, and always save a small portion of cells on day of grafting procedure to verify loss- or gain-of-expression. Lentiviral titer will vary depending on the construct used and should be determined before infection to achieve 90-100% efficiency. We monitor viral infection efficiency with GFP coexpressed from the lentiviral vector. We routinely perform quantitative PCR and/or Western blot to determine the extent of knockdown or overexpression. Utilizing dual-expression vectors with fluorescent tags to label virally infected cells provides a way to report perdurance of signal and number of cells expressing our constructs in mature grafts. We use GFP driven by a CMV promoter from the lentiviral vector pSicoR-CMV-GFP 10 in combination with Smo shRNA. In Figure 3, we show a 3-week old dermal-specific graft where GFP is lentivirally-expressed in dermal papilla of a representative hair follicle.
Figure 1. Histological analysis of hair follicle growth. (A) View of control hair regeneration graft with dermal cells infected with empty lentiviral vector and untreated keratinocytes. (B) Smoothened knockdown using lentiviral shRNA in dermal cells combined with untreated keratinocytes results in loss of hair follicles. (C) Hematoxylin and eosin staining shows anagen hair follicles in control grafts extend down into the dermis and (D) Smoothened knockdown hair follicles remain stunted and largely absent. All images are three weeks after grafting. Scale bar denotes 100 μm.
Figure 2. Grafting primary cells. (A) nu/nu mouse with sutured chamber housing primary dermal cells and keratinocytes. (B) Removal of chamber exposes newly formed skin that is dull and opaque in character. (C) Fully grown hairs on graft using wild-type primary dermal cells and keratinocytes at three weeks after grafting. (D) Addition of primary dermal cells without keratinocytes leads to no hair after three weeks. Similar results are seen with addition of primary keratinocytes without dermal cells.
Figure 3. Maintenance of GFP expression in dermal papilla. Confocal images of dermal papilla from a 3-week old regenerated graft. GFP was expressed in the dermal cell population from a lentiviral vector and detected in the dermal papilla (green). Versican (red) demarcates the dermal papilla and nuclei were label with Hoechst (blue). Note GFP is expressed specifically in dermal cells but not in the surrounding keratinocytes. Scale bar denotes 20 μm.
Hair reconstitution assays provide a unique organ regeneration model for examining the mechanism of de novo hair follicle formation. Here, we describe a modified chamber hair assay useful for determining gene function in hair follicle formation. Our assay is based on the reported chamber hair reconstitution assay 5, 6,11, which we modified to introduce a lentiviral expression technique to achieve gene overexpression or knockdown in either the dermal or epidermal cell types. Our assay provides a rapid alternative to generating tissue-specific genetic knockout. This assay allows us to demonstrate gene function in hair follicle formation in as little as three weeks from infecting primary cells with lentivirus to graft collection. Our assay can be extended to address genetic interactions using combination shRNA/cDNA delivery by lentivirus into one cell type 12, as well as allows examination of signaling between the dermal and epidermal cell types.
Our hair assay is best suited for detecting strong gain- or loss-of-function phenotypes in hair follicle regeneration, while subtle defects are harder to observe. We have successfully demonstrated dermal specific gene function of a few genes using our hair regeneration assay 1,12. Based on the GFP marker co-expressed from lentivirus vector expressing shRNA 10, we demonstrated that the shRNA expressing donor dermal cells persisted in the regenerated hair grafts. GFP-positive cells were present in the dermal papilla (DP) of the regenerated hair follicles (Figure 3). The DP cells likely consisted of different levels of gene knockdown as cells expressed varying levels of GFP, thus the observed hair follicle phenotype was a range from genetic hypomorph to null.
One improvement for this assay will be to establish a quick and efficient selection for the high shRNA expressing cells before grafting such as using FACS to purify strong GFP-expressing cells. An alternative is to substitute mutant or conditional knockout cells in this assay 9. On the other hand, a culture system that can preserve DP cell function is very useful as DP potency is gradually lost once the primary dermal cells are passaged. Potential culture systems include the use of biomaterials derived from artificial niche or aggregation cultures2,7,8,13. Another improvement will be to generate a reliable epidermal cell freezing method with a high cell recovery rate as this will reduce the use of the second set of mouse pups (step 7) to generate fresh keratinocytes in dermal-specific loss- or gain- of-function studies.
This chamber hair assay produces hair follicle density and quality similar to normal mouse skin, although hair growth is slightly less synchronized and follicle orientation is more random. A few limitations of the hair regeneration genetic assay include the requirement of large amount of lentivirus and cell numbers, and it is very labor intensive in terms of surgical methods when compared to other forms of hair reconstitution assays such as the patch and flap assays 3,4,14. However, the quality of hair follicles and timeline to detect hair growth is superior to other assays 4. Our targeted hair regeneration assay provides a fast and convenient companion to existing genetic models.
The authors have nothing to disclose.
This work was supported by NIH NRSA 1F32CA14208701 (S.X.A.) and NIH grants AR052785 and AR046786 (A.E.O. and W.-M.W.).
Name | Company | Catalog # | Comments |
PBS | Invitrogen | 14190-144 | |
HBSS | Invitrogen | 14170-122 | |
DMEM | Invitrogen | 11995-065 | |
0.25% Trypsin-EDTA | Invitrogen | 25200-056 | |
Cnt-07 | Cell N Tec | CnT-07 | |
AminoMAX-C100 | Invitrogen | 17001-074 | |
AminoMAX-C100 Supplement | Invitrogen | 12556-015 | |
FBS | Invitrogen | 26140-079 | |
Penicillin/Streptomycin | Invitrogen | 15140-122 | |
Fungizone | Invitrogen | 15290-018 | |
Gentamycin | Invitrogen | 15710-064 | |
Dispase | Roche | 4942078001 | |
Collagenase, Type 1 | Sigma | C-0130 | |
Polybrene | Sigma | 107689-10G | |
Tissue culture dish | Fisher Scientific | 08-772E | |
Dissecting Scissors | Fisher Scientific | 11-999 | |
Forceps | Fisher Scientific | 10-275 | curved |
Scalpal | Medex Supply | GRF-2975#10 | Size no. 10 |
70 μm cell stainer | VWR | 21008-952 | |
15 ml conical centrifuge tube | Fisher Scientific | 14-959-49D | |
Alcohol swabs | Fisher Scientific | 1368063 | |
23 gauge needle | Fisher Scientific | 14-821-13F | |
Eye lubricant | CVS | 8883660 | |
Providone-lodine swabs | Fisher Scientific | NC0116841 | |
Silicon Chambers | Renner GmbH | F2U, 30268 | |
Sutures | Acuderm | SUP3524 | |
Flexible bandage | Fisher Scientific | 22-363-100 | |
Non-adherent dressing | TELFA | 1050 | |
Materials | |||
Wash solution PBS Dispase solution HBSS Neutralizing media HBSS Collagenase solution 0.25% (w/v) Collagenase, Type 1 100 μg/ml Penicillin/Streptomycin 2.5 μg/ml Fungizone 50 μg/ml Gentamycin Polybrene solution HBSS |