The efficient solid-phase peptide synthesis of a functionalized bis-peptide trimer utilizing a “safety catch” cleavage procedure from HMBA resin is described.
In 1962, R.B. Merrifield published the first procedure using solid-phase peptide synthesis as a novel route to efficiently synthesize peptides. This technique quickly proved advantageous over its solution-phase predecessor in both time and labor. Improvements concerning the nature of solid support, the protecting groups employed and the coupling methods employed over the last five decades have only increased the usefulness of Merrifield’s original system. Today, use of a Boc-based protection and base/nucleophile cleavable resin strategy or Fmoc-based protection and acidic cleavable resin strategy, pioneered by R.C. Sheppard, are most commonly used for the synthesis of peptides1.
Inspired by Merrifield’s solid supported strategy, we have developed a Boc/tert-butyl solid-phase synthesis strategy for the assembly of functionalized bis-peptides2, which is described herein. The use of solid-phase synthesis compared to solution-phase methodology is not only advantageous in both time and labor as described by Merrifield1, but also allows greater ease in the synthesis of bis-peptide libraries. The synthesis that we demonstrate here incorporates a final cleavage stage that uses a two-step “safety catch” mechanism to release the functionalized bis-peptide from the resin by diketopiperazine formation.
Bis-peptides are rigid, spiro-ladder oligomers of bis-amino acids that are able to position functionality in a predictable and designable way, controlled by the type and stereochemistry of the monomeric units and the connectivity between each monomer. Each bis-amino acid is a stereochemically pure, cyclic scaffold that contains two amino acids (a carboxylic acid with an α-amine)3,4. Our laboratory is currently investigating the potential of functional bis-peptides across a wide variety of fields including catalysis, protein-protein interactions and nanomaterials.
1. Setup
2. Loading First Bis-Peptide Onto Resin
3. Deprotection of First Bis-Peptide and Simultaneous Resin Capping
4. Coupling Boc/tBu-Protected Functionalized Bis-Amino Acid
5. Deprotection of Boc/tBu-Protected Functionalized Bis-Amino Acid
6. Repeat steps 4 and 5 as desired to synthesize targeted bis-peptide.
7. Functionalizing the Bis-Peptide Prolidine End
8. Deprotection of Fmoc and Acylation of the Quaternary End of the Bis-Peptide
9. Remove the Boc Group from the Resin Bound Amino Acid and Cleave from Resin
10. Purification of Bis-Peptide
11. Assessment Methods
12. Representative Results
An example of both crude (Figure 4) and purified (Figure 5) LCMS traces are provided. Purified yields of approximately 10% are expected using the methods outlined above.
Figure 1. Diagram of Experimental Set-Up for Solid Phase Synthesis.
Figure 2. Relevant Nomenclature of Bis-Amino Acids/Bis-Peptides.
Figure 3. Overall Synthetic Scheme. Click here to view larger figure.
Figure 4a. HPLC Trace of Crude Product at 274 nm.
Figure 4b. MS Spectrum of Crude Product Peak.
Figure 5a. HPLC Trace of Purified Product at 274 nm.
Figure 5b. MS Spectrum of Purified Product Peak.
The synthetic approach presented herein provides a method for the synthesis of functionalized bis-peptides from bis-amino acid building blocks using common solid-phase peptide synthesis techniques. The monomer synthesis of these “Pro4” building blocks from trans-4-hydroxyproline3 is highly scalable and has been successfully completed to the hydantoin stage at a 600 mmol (234 g) scale (unpublished). Once the monomers are in hand, the use of solid-phase techniques provides a more rapid method of bis-peptide synthesis than our current solution-phase methodology4 by eliminating the need for reaction work-ups and intermediate purifications.
The primary challenge in solid-phase synthesis is diagnosing synthetic progress and problem solving since no intermediates are isolated. This has lead to the development of many colorimetric tests including those to identify if free amines (Kaiser Test10) or free hydroxyls (Methyl Red Test7) are exposed on resin. Unfortunately, the commonly used Kaiser Test10 is not generally applicable in our solid-phase synthesis due to the almost exclusive use of secondary amines or amines attached to a quaternary carbon. Other options for assessment on HMBA resin include test cleavages using a nucleophile such as hydrazine11, quantitative Fmoc cleavage monitored by UV/Vis1,11, and trapping and analyzing incoming activated compounds.
Another overlooked issue in solid-phase synthesis is the repetitive nature of synthetic steps required by the operator. With this is mind, the authors strongly recommend the use of a spreadsheet or checklist when performing any manual solid-phase peptide synthesis.
The difficultly in using bis-peptides for solid-phase synthesis compared to common α-amino acids includes the potential for more difficult couplings due to steric hindrance, the need for on-resin diketopiperazine closures, and simultaneous deprotections (Boc/tBu; Cbz/tBu). Another difficultly lies in achieving quantitative release from the resin using this “safety catch” method when compared to more conventional means. With these factors in mind, it is very possible that further optimization of this method can be achieved and current efforts are underway in our group to improve the method presented here.
The authors have nothing to disclose.
The authors would like to thank Dr. Zachary Z. Brown and Jennifer Alleva for the initial development of this solid phase synthesis technique and Matthew F.L. Parker for helpful discussions. This work is supported by the Defense Threat Reduction Agency (DOD-DTRA) (HDTRA1-09-1-0009) and the Horst Witzel Fellowship Award supported by Cephalon, Inc.
Name | Company | Catalogue Number | Comments |
HMBA-Am Resin | NovaBiochem | 855018 | |
MSNT | NovaBiochem | 851011 | |
NMI | Sigma-Aldrich | 336092 | Toxic, Corrosive |
DCM | Sigma-Aldrich | D65100 | Carcinogenic |
Anhydrous DCM | Acros | 34846 | Carcinogenic |
33% Hydrogen Bromide in Acetic Acid | Sigma-Aldrich | 248630 | Toxic, Corrosive, Fumes when open |
DIPEA | Sigma-Aldrich | 387649 | Flammable, Toxic, Corrosive |
DMF | Fisher Scientific | AC27960 | Flammable, Toxic |
Anhydrous DMF | Acros | 34843 | Flammable, Toxic |
HOAt | GenScript | C01568 | |
DIC | Acros | BP590 | Flammable, Toxic, Corrosive |
TFA | Sigma-Aldrich | T6508 | Toxic, Corrosive |
TIPS | Acros | 21492 | Flammable, Toxic |
Piperidine | Sigma-Aldrich | 104094 | Flammable, Toxic, Corrosive |
HATU | GenScript | C01566 | Toxic |
NMP | Acros | 36438 | Toxic |
DMAP | NovaBiochem | 851055 | Toxic |
Methyl Red | Sigma-Aldrich | 250198 | |
THF | Sigma-Aldrich | 401757 | Flammable, Toxic, Peroxide Forming |
Pyrrolidine | Sigma-Aldrich | P73803 | Flammable, Toxic, Corrosive |
Dimethyl Sulfoxide | Fisher | D1281 | |
SPPS Reaction Vessels | Grace | 211108 | |
LCMS | Agilent | 1200 Series | |
Semi-Prep LC | Hewlett Packard | 1100 Series | |
Lyophilizer | Labconco | 7934027 | |
Rotovapor | Buchi | R-210 Series | |
Argon | Airgas | AR PP300CT |