Determining the cell cycle position of a population of cells, or understanding how signals affect proliferation, can be readily measured by flow cytometry using this protocol. We report a simple experimental approach to staining cells and quantifying their position in the cell cycle.
The regulation of cell proliferation is central to tissue morphogenesis during the development of multicellular organisms. Furthermore, loss of control of cell proliferation underlies the pathology of diseases like cancer. As such there is great need to be able to investigate cell proliferation and quantitate the proportion of cells in each phase of the cell cycle. It is also of vital importance to indistinguishably identify cells that are replicating their DNA within a larger population. Since a cell′s decision to proliferate is made in the G1 phase immediately before initiating DNA synthesis and progressing through the rest of the cell cycle, detection of DNA synthesis at this stage allows for an unambiguous determination of the status of growth regulation in cell culture experiments.
DNA content in cells can be readily quantitated by flow cytometry of cells stained with propidium iodide, a fluorescent DNA intercalating dye. Similarly, active DNA synthesis can be quantitated by culturing cells in the presence of radioactive thymidine, harvesting the cells, and measuring the incorporation of radioactivity into an acid insoluble fraction. We have considerable expertise with cell cycle analysis and recommend a different approach. We Investigate cell proliferation using bromodeoxyuridine/fluorodeoxyuridine (abbreviated simply as BrdU) staining that detects the incorporation of these thymine analogs into recently synthesized DNA. Labeling and staining cells with BrdU, combined with total DNA staining by propidium iodide and analysis by flow cytometry1 offers the most accurate measure of cells in the various stages of the cell cycle. It is our preferred method because it combines the detection of active DNA synthesis, through antibody based staining of BrdU, with total DNA content from propidium iodide. This allows for the clear separation of cells in G1 from early S phase, or late S phase from G2/M. Furthermore, this approach can be utilized to investigate the effects of many different cell stimuli and pharmacologic agents on the regulation of progression through these different cell cycle phases.
In this report we describe methods for labeling and staining cultured cells, as well as their analysis by flow cytometry. We also include experimental examples of how this method can be used to measure the effects of growth inhibiting signals from cytokines such as TGF-β1, and proliferative inhibitors such as the cyclin dependent kinase inhibitor, p27KIP1. We also include an alternate protocol that allows for the analysis of cell cycle position in a sub-population of cells within a larger culture5. In this case, we demonstrate how to detect a cell cycle arrest in cells transfected with the retinoblastoma gene even when greatly outnumbered by untransfected cells in the same culture. These examples illustrate the many ways that DNA staining and flow cytometry can be utilized and adapted to investigate fundamental questions of mammalian cell cycle control.
1. Labeling and fixing of cells
2. Denaturing and staining of BrdU and DNA
3. Analysis by flow cytometry
4. Data analysis
5. Alternate protocol for analysis of cell cycle in a mixed population of cells
6. Representative Results:
We provide three examples of experimental cell cycle analyses using our approaches. The first uses retroviral expression of the cyclin dependent kinase inhibitor p27KIP1 in mouse embryonic fibroblasts. Twenty four hours after drug selection for viral infection was complete, cells were pulse labeled with BrdU for one hour. In this experiment ectopic expression of the inhibitor is used to arrest proliferation of the cells (Fig. 3A and B). As shown in Fig. 3B little BrdU positive events are evident in the S-phase gate in response to p27. Likewise, the percentage of cells in S-phase for p27 expressing cells is quite low as diagramed in Fig. 3C. This type of analysis has been very effective in characterizing the cell cycle control defects in cells derived from various strains of gene-targeted mice6, 7, 8.
In the second experiment, untransformed mammary epithelial cells (MCF10A) were treated with the growth inhibitory cytokine, transforming growth factor beta one (TGF-β1) for 24 hours. Cells were labeled with BrdU for four hours immediately prior to harvesting. As shown in Fig. 4 BrdU labeling in S-phase cells is greatly diminished by TGF-β1 signaling, the specificity of our staining is also validated with an IgG negative control (Fig. 4C). Quantification of the different phases of the cell cycle confirms that TGF-β1 primarily inhibits proliferation in the G1 phase of the cell cycle, leading to an accumulation in this phase.
In our last example, pRB deficient SaOS-2 cells are transfected with a CMV-CD20 expression vector and either CMV-RB or CMV-β-Gal as a control. Three days following transfection cells were harvested, stained, and fixed. Flow cytometry analysis of these cells is shown in Fig. 5. This demonstrates the cell cycle distribution of negative control transfected cells (Fig. 5A) in comparison with the distribution following 72 hours of pRB expression (Fig. 5B). Following curve fitting by Multi Cycle software, a direct comparison of the proportion of cell cycle phases is shown in Fig. 5C. This reveals the accumulation of cells in G1 following pRB expression and the relative depletion of cells from the S and G2/M phases. We have used variations on this assay to probe G1 arrest mechanisms extensively9, 10, 11, 12, 13.
These examples demonstrate how cell cycle control can be measured in response to a variety of stimuli or cell manipulations. This approach can therefore be adapted to many applications that require the measurement of cell cycle position in culture type experiments.
Figure 1. Quantitation of cell cycle phases by combined propidium iodide and BrdU staining (PI-BrdU). (A) This panel displays three dimensional flow cytometry of propidium iodide and BrdU stained cells. Note that cells with 2N and 4N DNA content are centered over the 200 and 400 marks on the X-axis scale for propidium iodide staining intensity. BrdU staining intensity is measured on a logarithmic scale on the Y-axis. Note the position of gates used to quantitate cells in the G1, S, and G2/M phases of the cell cycle. (B) The relative proportion of cells in each of the G1, S, and G2/M gates from A are shown on this graph.
Figure 2. Quantitation of cell cycle phases in selected cells using propidium iodide and the cell surface marker CD20. (A) This panel shows propidium iodide and CD20 staining for a mixture of cells, some of which ectopically express CD20 and pRB. Note that the cells with 2N and 4N DNA (the most abundant populations) are centered over the 200 and 400 marks on the X-axis. The position of the CD20 + gate selects cells that are stained at least 10X more brightly than background. (B) A graph of cell counts versus propidium iodide staining is shown for CD20 negative cells in panel A that are asynchronously proliferating. (C) A similar graph is shown for CD20 positive cells from panel A that have been induced to arrest with pRB expression and contain cells with primarily 2N DNA content. This demonstrates that an arrested sub-population can be distinguished from other cells in this culture using this staining technique.
Figure 3. Inhibition of cell proliferation by p27KIP1. (A) PI-BrdU analysis is used to measure the cell cycle phases in an asynchronously proliferating population of cells that were transduced with an empty pBABE retroviral vector. (B) A similar analysis of cells transduced with pBABE-p27. Note the absence of cells in the S-phase and greater intensity of events in G1 and G2/M gates. (C) Quantitation of cells in the respective phases of the cell cycle in asynchronously proliferating control and p27 expressing cells.
Figure 4. Inhibition of cell proliferation by TGF-β1 (A) PI-BrdU analysis of asynchronously proliferating MCF10A cells. (B) Analysis of cells treated with 100 pM of TGF-β1 for 24 hours. Note the accumulation of cells primarily in the G1 phase of the cell cycle. (C) Validation of BrdU staining by replacing the anti-BrdU primary antibody with a non-specific IgG control in asynchronously proliferating cells. (D) Graphical quantitation of the respective cell cycle phases from A and B.
Figure 5. Inhibition of cell proliferation by pRB. (A) Cell counts versus propidium iodide staining of CD20 and ß-gal transfected cells is shown. This is an important control as transfection can partially synchronize cells, rendering the untransfected population (CD20 – cells) as an inappropriate control for the transfected sub-population. Transfected cells need to be compared with other analogously transfected cells. (B) Cell counts versus propidium iodide graph of CD20 and pRB transfected cells. Note the almost exclusive presence of a 2N peak. (C) Graphical representation of cell cycle phase proportions determined from A and B using curve fitting methods in Multi Cycle software.
In our experience, success with these techniques is dependent on a few key controls and experimental conditions. One is establishing an asynchronously proliferating control for use in these experiments. This control serves three important purposes. First, it ensures that culture conditions used for all experimental samples are adequate to support continual proliferation in the absence of treatment. This sample also serves the purpose of a positive control for the staining methodology to ensure that BrdU or CD20 positive cells can be detected when they are present. Lastly, this sample is used to calibrate the flow cytometer. This control sample can be used to adjust propidium iodide staining intensity to detect 2N and 4N cells at 200 and 400 respectively. Furthermore, detection sensitivity of BrdU or CD20 can be adjusted so that negative and positive signals are centered as shown in Figures 1A and 2A. When all samples have a similar concentration of cells in PI-RNase solution, then few adjustments to the cytometer are needed as subsequent samples are run. This is important for reasons shown in Fig. 4B and 5B where strong G1 accumulation creates essentially a single G1 peak that could be misinterpreted as G2/M.
The representative experiments also make other important points. First of all, they demonstrate that BrdU uptake and labeling can vary between cell types. For this reason it is important to empirically determine the length of pulse and staining conditions needed to adequately detect cells in S-phase. In general, cell types that double in culture in 24 hours or less can be labeled with BrdU in an hour. Slower growing cell types may require longer pulses and alterations to antibody staining conditions and duration. MCF10A cells are an excellent example in this regard as they were labeled with BrdU for four hours and stained with twice the standard concentration of antibodies for four times as long. Investigators should be careful not to exceed 6 hours of BrdU labeling even with very slowly growing cells as this can erroneously lead to inclusion of G2/M cells in the S-phase population. Secondly, in comparing the effects of p27KIP1 expression with those of TGF-β1, it is clear that p27 can induce an accumulation in either G1 or G2/M phases while TGF-β1 signaling induces a G1 arrest. Traditional means of detecting proliferation such as 3H-Thymidine incorporation and scintillation counting are unable to distinguish these possibilities.
In our alternate protocol we demonstrate the detection of a sub-population of cells in a larger untransfected population. It is important to empirically determine the most appropriate reporter for detecting transfected cells. In our experience some cell types either express cell surface markers poorly, or can′t properly traffic them to the plasma membrane, resulting in an inability to detect transfected cells. Likewise, not all cells tolerate the membrane bound form of GFP. Selection of the most appropriate reporter should be made by assessing transfection efficiency of the reporter as well as the relative intensity of expression compared to untransfected controls. Ideally, heterologous expression of these molecules will be well tolerated and this is suggestive that the markers have little to no effect on cell cycle distribution.
One limitation of these types of flow cytometry approaches is that they are only able to establish relative abundances of cell cycle phases compared to one another. For this reason it is ambiguous if expression of p27 in Figure 3 truly induces an arrest in G1 and G2/M, or if it just slows progression through these phases relative to S-phase. These possibilities can be investigated further by treating a parallel sample of cells with a mitotic inhibitor such as nocodazole, or G1/S inhibitor like aphidicolin. Since these drugs create a dominant arrest in M-phase or early S-phase respectively, slowly proliferating cells will accumulate at the drug induced arrest point. For example cells arrested in G1 because of pRB expression will remain in G1 despite nocodazole treatment while control cells will accumulate in M-phase13.
Taken together, these experimental approaches offer a flexible methodology that can be applied to a wide range of mammalian cell cycle research questions. They can readily detect alterations in cell cycle progression and quantify differences when compared with controls.
The authors have nothing to disclose.
The authors wish to thank the Canadian Institutes of Health Research (CIHR) and the Canadian Cancer Society for funding cell cycle research in their laboratory. MJC is a recipient of an MD/PhD fellowship from the CIHR. MJC and MA are members of the CaRTT training program.
Name of the reagent/equipment | Company | Catalogue number | Comments (optional) |
---|---|---|---|
Cell Proliferation Labeling reagent | GE Amersham | RPN201 | |
Anti-BrdU Antibodies | BD Biosciences | 347580 | |
Anti-Mouse FITC conjugated Antibodies | Vector Labs | FI-2000 | |
Cell Strain Filters | BD Falcon | 352235 | |
Anti-CD20 Antibodies | BD Biosciences | 347673 | |
Multi Cycle Software | Phoenix Flow Systems | N/A |