The Giant Fiber System is a simple neuronal circuit of adult Drosophila melanogaster containing the largest neurons in the fly. We describe the protocol for monitoring synaptic transmission through this pathway by recording post synaptic potentials in dorsal longitudinal (DLM) and tergotrochanteral (TTM) muscles following direct stimulation of the Giant Fiber interneurons.
When startled adult D. melanogaster react by jumping into the air and flying away. In many invertebrate species, including D. melanogaster, the “escape” (or “startle”) response during the adult stage is mediated by the multi-component neuronal circuit called the Giant Fiber System (GFS). The comparative large size of the neurons, their distinctive morphology and simple connectivity make the GFS an attractive model system for studying neuronal circuitry. The GFS pathway is composed of two bilaterally symmetrical Giant Fiber (GF) interneurons whose axons descend from the brain along the midline into the thoracic ganglion via the cervical connective. In the mesothoracic neuromere (T2) of the ventral ganglia the GFs form electro-chemical synapses with 1) the large medial dendrite of the ipsilateral motorneuron (TTMn) which drives the tergotrochanteral muscle (TTM), the main extensor for the mesothoracic femur/leg, and 2) the contralateral peripherally synapsing interneuron (PSI) which in turn forms chemical (cholinergic) synapses with the motorneurons (DLMns) of the dorsal longitudinal muscles (DLMs), the wing depressors. The neuronal pathway(s) to the dorsovental muscles (DVMs), the wing elevators, has not yet been worked out (the DLMs and DVMs are known jointly as indirect flight muscles – they are not attached directly to the wings, but rather move the wings indirectly by distorting the nearby thoracic cuticle) (King and Wyman, 1980; Allen et al., 2006). The di-synaptic activation of the DLMs (via PSI) causes a small but important delay in the timing of the contraction of these muscles relative to the monosynaptic activation of TTM (~0.5 ms) allowing the TTMs to first extend the femur and propel the fly off the ground. The TTMs simultaneously stretch-activate the DLMs which in turn mutually stretch-activate the DVMs for the duration of the flight. The GF pathway can be activated either indirectly by applying a sensory (e.g.”air-puff” or “lights-off”) stimulus, or directly by a supra-threshold electrical stimulus to the brain (described here). In both cases, an action potential reaches the TTMs and DLMs solely via the GFs, PSIs, and TTM/DLM motoneurons, although the TTMns and DLMns do have other, as yet unidentified, sensory inputs. Measuring “latency response” (the time between the stimulation and muscle depolarization) and the “following to high frequency stimulation” (the number of successful responses to a certain number of high frequency stimuli) provides a way to reproducibly and quantitatively assess the functional status of the GFS components, including both central synapses (GF-TTMn, GF-PSI, PSI-DLMn) and the chemical (glutamatergic) neuromuscular junctions (TTMn-TTM and DLMn-DLM). It has been used to identify genes involved in central synapse formation and to assess CNS function.
1. Equipment and Materials
2. Preparing the D. melanogaster
3. Placing the Electrodes
4. Stimulation and Recording
5. Results: Response Latencies and Frequency of Following in the Giant Fiber Pathway
6. Representative Results
Wild type short-latency responses (stimulated electrodes are placed in the eyes, bypassing sensory receptors and triggering the GF circuit directly) depend on genotype, genetic background, temperature and age, and range between 0.7 and 1.2 ms for the GF-TTM pathway and 1.3 and1.7 ms for the GF-DLM pathway (Tanouye and Wyman, 1980; Thomas and Wyman, 1984; Engel and Wu, 1992; Allen and Murphey, 2007; Phelan et al., 2008; Augustin et al., unpublished). This very short TTM latency is due to the robust GF-TTMn electrochemical synapse of the monosynaptic pathway and the longer DLM latency occurs because of the disynaptic nature of the pathway as well as the presence of a chemical synapse (PSI-DLMn). Intermediate- and long-latency responses (>3 ms) result from the activation of the GF afferents and are achieved either by using a lower intensity stimulation or providing a visual (“light-off”) signal. At 100Hz both TTM and DLM should follow the stimuli 1:1. Above 100Hz DLM responses will start to show failures as the chemical synapse between PSI and the DLMns does not have sufficient time to recover between stimuli less than 10ms apart. TTM responses, however, will remain 1:1 with stimuli even beyond 300Hz (Tanouye and Wyman, 1980; Engel and Wu, 1992; Allen et al., 2007; Martinez et al., 2007). Mutations in the shakB gene, encoding a Drosophila gap junction channel (“innexin”), significantly increase the response latency of the GF-TTM pathway (~1.5 ms) while the GF-DLM branch is unresponsive (Allen and Murphey, 2007; Phelan et al., 2008). The mutant response can be restored by stimulating thoracic ganglia directly, demonstrating that the delayed effect is not due to disrupted neuromuscular transmission. The ability to follow high frequency stimulation is also impaired in these mutants compared to wild type flies where the GF-DLM and GF-TTM pathways are usually able to follow 10 stimuli with 1:1 ratio up to 100 Hz and 300 Hz, respectively. It is important to note that these frequencies are considerably above normal stimulation frequencies received by the contracting muscles during the sustained flight (3-10 Hz) (Hummon and Costello, 1989).
Another parameter used to describe the stability of the GFS outputs is the “refractory period”, or the minimal time between twin stimulus pulses that still produces two responses from the muscle. The refractory time varies between 1-4 ms for TTMs and 7-15 ms for DLMs. The comparatively long refractory period for DLMs is due to relatively labile chemical synapses at the PSI-DLMn junction (Tanouye and Wyman, 1980; Gorczyca and Hall, 1984; Engel and Wu, 1992; Banerjee et al., 2004; Allen and Godenschwege, 2010).
One of the most important things one has to pay attention to when trying to obtain high quality recordings is the proper orientation and health of the preparation. Ideally, the fly should still be alive at the end of the recording session and responsive to electrical stimuli. For the recording electrodes to most efficiently penetrate the thoracic exoskeleton, the fly should be glued to the surface in such a way as to form a right angle with the electrodes; if necessary, the insertion of electrodes can be facilitated by removing a portion of the dorsal thoracic cuticle with a tungsten scalpel thus exposing the DLM flight muscle (this step offers an additional advantage of making it harder for the tips of glass electrodes to break). Also, the care must be taken to avoid pushing the electrodes through the subcuticularly located DLMs and TTMs. The head of the fly should be well secured to allow for the stimulating electrodes to be properly inserted into the brain and to prevent them from being pulled out during the recording session.
Due to its size and well-described morphology, the GFS represents one of the most accessible neuronal pathways in Drosophila. The permeability of electrical synapses to small molecular weight tracer dyes allows for the visualisation of electrically coupled neurons, and several available GAL4 lines make it possible to manipulate gene expression levels in a subset of cells or cell groups (Jacobs et al., 2000; Allen et al., 2006) In addition to the above mentioned advantages, both afferent and thoracic components of the circuit display properties such as habituation, spontaneous recovery and dishabituation, making the Drosophila GFS a convenient model system for studying neuronal plasticity (Engel and Wu, 1996).
The authors have nothing to disclose.
This work was supported by a Wellcome Trust grant to L.P.
NAME | COMPANY | CAT. # | COMMENTS |
S48 Square Pulse Stimulator | Grass Instruments | http://www.grasstechnologies.com/ | |
Stimulation unit | Grass Instruments | http://www.grasstechnologies.com/ | |
SIU5 RF Transformer Isolation Unit | Grass Instruments | http://www.grasstechnologies.com/ | |
5A two-channel intracellular Microelectrode Amplifier | Getting Instruments | http://www.gettinginstruments.com/ | |
Digidata 1440A data acquisition system | Molecular Devices | http://www.moleculardevices.com/ | |
Analogue-digital Digidata 1320 and Axoscope 9.0 software | Molecular Devices | http://www.moleculardevices.com/ | |
Recording platform with manual micromanipulators | Narishige, Sutter Ins., World Precision Ins. | http://narishige-group.com/ http://www.sutter.com/index.html http://www.wpi-europe.com/en/ |
|
Light source | Fostec | http://www.nuhsbaum.com/FOSTEC.htm | |
Wild M5 stereomicroscope | Wild Heerbrugg | http://www.wild-heerbrugg.com/ | |
Vibration isolation table | TMC | http://www.techmfg.com/ | |
Borosilicate tubing for microelectrodes | Sutter Instrument | http://www.sutter.com/index.html | |
P-95 Micropipette puller | Sutter Instrument | http://www.sutter.com/index.html | |
Microfil 34 gauge, 67 mm (electrode filler) | World Precision Instruments | MF34G-5 | http://www.wpi-europe.com/en/ |
Microdissection tools (forceps,…) | Fine Science Tools | www.finescience.com | |
Dissecting (stereo) microscope | Leica | http://www.leica-microsystems.com/ | |
Faraday cage | Unknown manufacturer |
Other: plastic syringes, tungsten earth wire and NaOH-sharpened tungsten electrodes, KCl, wax platform, a PC with monitor…