Intravital microscopy to follow temporal and spatial hemodynamic and inflammatory events in the pial microcirculation.
This experimental model was designed to assess the mouse pial microcirculation during acute and chronic, physiological and pathophysiological hemodynamic, inflammatory and metabolic conditions, using in vivo fluorescence microscopy. A closed cranial window is placed over the left parieto-occipital cortex of the mice. Local microcirculation is recorded in real time through the window using epi and fluorescence illumination, and measurements of vessels diameters and red blood cell (RBC) velocities are performed. RBC velocity is measured using real-time cross-correlation and/or fluorescent-labeled erythrocytes. Leukocyte and platelet adherence to pial vessels and assessment of perfusion and vascular leakage are made with the help of fluorescence-labeled markers such as Albumin-FITC and anti-CD45-TxR antibodies. Microcirculation can be repeatedly video-recorded over several days. We used for the first time the close window brain intravital microscopy to study the pial microcirculation to follow dynamic changes during the course of Plasmodium berghei ANKA infection in mice and show that expression of CM is associated with microcirculatory dysfunctions characterized by vasoconstriction, profound decrease in blood flow and eventually vascular collapse.
1. Craniotomy
A craniotomy in 8-to-10-week old mice needs to be performed in advance as previously described1, except that a titanium bar is not placed in the head of the animal. The chronic cranial window is a stable preparation allowing examination of the pial microcirculation even months after being implanted. Usually, we perform our studies 2-3 weeks after the cranial window implantation.
2. Intravital microscopy
3. Representative results
Figure 1. (Step 2.6) Pictures of the mouse pial vascular network accessible through the cranial window.
Figure 2. (Steps 3.1-3.5) Schematic display of the set up for intravital microscopy of the mouse pial microcirculation. 1: intravital microscope; 2: 20X water immersion objective; 3: light source; 4a: digital low-light high-speed camera; 4b: analog camera; 5: mouse in the stereotaxic frame; 6: computer monitor; 7: analog shearer monitor showing how the image shearing (arrow) is done to measure vessel diameter.
Figure 3. (Step 3.6-3.8) Microvascular red blood cell velocity measurements by cell tracking from high speed fluorescence video recordings. Pictures A to F are sequence images of one pial vessel, showing a single moving RBC crossing the microscopic field delimited by the camera. Manual determination of frame by frame positions of 15 or more cells crossing the field, with its pre-calibrated distance, allows calculation of mean RBC velocity in each vessel with the help of an Excel spreadsheet.
Figure 4. (Step 3.9) Data of a representative experiment showing the changes in pial blood flow over time in Plasmodium berghei ANKA (PbA) infected mice (n = 5) and in uninfected control mice (n = 5). Whereas in control mice the pial blood flow is relatively stable over time, PbA-infected mice show a marked decrease in blood flow at the time of cerebral malaria development (day 6). Data are the mean ± SEM.
Figure 5. (Step 4.3) A large number of leukocytes adherent to pial vessels of a mouse infected with Plasmodium berghei ANKA, as revealed by staining with anti-CD45-Texas Red fluorescent antibodies.
The intravital microscopy method described here provides a unique and powerful tool for detailed observation of the pial microcirculation in the mouse. It allows singling out individual arterioles and venules and measuring changes of a number of parameters such as vessel diameters, RBC velocities, blood flow, adherence and rolling of leukocytes, platelets and other blood elements, vascular leakage, tissue pH and pO2 and potentially many other applications. The in vivo vascular response can be promptly evaluated upon interventions such as drug administration, or during pathological processes. Moreover, the microcirculatory behavior can be dynamically followed up over time. We have used this technology to study the pial microcirculatory changes during cerebral malaria caused by P. berghei ANKA in the mouse, and have shown that the neurological syndrome in this model is associated with a microcirculatory dysfunction characterized by reduced cerebral blood flow, vasoconstriction, impaired perfusion and eventually vascular collapse6.
The authors have nothing to disclose.
This work was supported by grants R01-HL87290, R01-HL87290-S1 and R01-AI082610 from the National Institutes of Health to LJMC.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
Isoflurane | Baxter | FDG9623 | ||
Carbocyanine dye Dil | Molecular Probes | D306 | ||
Albumin-FITC | Sigma-Aldrich | A9771 | ||
Anti-CD45-TxR Ab | Invitrogen | MCD4517 | ||
P. berghei ANKA-GFP | MR4 | MRA-865 |