Science Education
>

Determining Ultrasonic Vocalization Preferences in Mice using a Two-choice Playback Test

Instructor Prep
concepts
Student Protocol
JoVE Journal
Behavior
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Journal Behavior
Determining Ultrasonic Vocalization Preferences in Mice using a Two-choice Playback Test

All procedures were approved by the Ethics Committee of Azabu University. All experiments were carried out in a soundproof chamber.

1. Animal Preparation

  1. Males for Recording
    1. Obtain sexually mature male mice experienced in mating.
  2. Female Subjects
    1. Obtain virgin female mice that have been housed with 2 to 5 littermates per cage (usually 8 – 12 weeks old).
    2. Obtain vaginal smears daily to determine the phase of the estrous cycle before the test, according to McLean21. Care should be taken to minimize the vaginal stimulation to avoid pseudopregnancy.
    3. Stain the smears with Giemsa, and determine phase of the estrous cycle based on the presence or absence of leukocytes, cornified epithelial cells, and nucleated epithelial cells, according to Nelson22.

2. Devices (Figure 1)

Figure 1
Figure 1. Schematic of the Two-choice Test Box and Devices. Mice can access rooms A and B through the small gates located between them and the neutral zone. The two-choice box and two ultrasound emitters are placed on the floor of a soundproof chamber. The microphone is suspended inside the soundproof chamber. Abbreviation: PC, personal computer. Please click here to view a larger version of this figure.

  1. For Recording
    1. Connect an ultrasonic condenser microphone to a PC using a USB A/D converter.
    2. Set the gain level of the A/D converter to “7”.
    3. Record acoustic data in 16-bit format files with a sampling rate of 400 kHz using audio capture software.
  2. For Playback
    1. Connect a D/A converter to the PC using a USB interface.
    2. Connect two amplifiers to the D/A converter through an attenuator. (The latter device serves to prevent overload.)
    3. Connect an ultrasound emitter to each amplifier.

3. USV Recording

  1. Place a male mouse in a small- (17 x 10 x 11 cm) or medium-sized (21 x 14 x 13 cm) cage with a 6 cm-diameter hole in the sidewall and the hole covered with a 0.5 cm wire mesh. When using a medium-sized cage, construct a partition across the center of the cage to reduce the area.
  2. Do not use bedding in the cage to avoid rustling noises that could contaminate the recordings.
  3. Place a microphone beside the mesh.
  4. Begin ultrasonic vocalization monitoring with the recording setup shown in step 2.1.
  5. Place a sexually mature female mouse in either metestrus or diestrus in the cage with the male mouse.
  6. Record USVs for 3 – 5 min.

4. Test Box

  1. Build the test box using acrylic board (Figure 1).
    Note: The test box (35 x 20, and x 20 cm high) is divided in three compartments: a neutral zone (15 x 20 cm), and rooms A and B (20 x 10 cm, each). Rooms A and B each have a 4 cm-diameter hole that is covered with a 0.5cm wire mesh. The holes and mesh are located at each end of rooms A and B. Make gates (5 x 5 cm each) between the neutral zone and rooms A and B.
  2. To prevent sound leakage insulate each ultrasound emitter, except for the side facing the mesh, using rubber plates, sealing them to the box around the perimeter of each mesh.
  3. Place lead seals on both sides of the wall between rooms A and B for sound insulation.

5. Preparing for Sound Playback

  1. Creation of Playback Sounds
    1. Capture a 20 sec segment of USV from the recorded file using digital audio editing software.
    2. Select and capture background noise (0.35 sec) from the 20 sec USV segment file. Create a 20 sec background noise file by repeating the noise segment.
    3. To play back the two sound files simultaneously, export them as a single stereo sound file, with one file for the “left ear” and the other file for the “right ear.”
    4. Filter the sound files using as high-pass filter with a cutoff of 40 kHz.
    5. Reduce noise using the noise-reduction tool in post-processing software. Select and capture a segment of the file that contains no USVs as the noise-reduction profile, and run noise reduction with level 40.
  2. Calibration of Playback Sounds
    1. Ensure that the space between ultrasound emitters and microphone is 10 cm.
    2. To calibrate sound pressure levels from the ultrasound emitters, perform ultrasonic monitoring using the configuration described in Step 2.1. Measure the sound pressure level by the microphone in decibels (dB).
    3. Using the attenuator and amplifiers, adjust the volume of the USVs generated by the ultrasound emitters to the same sound pressure level as the male USVs recorded in Step 3.
    4. When using the two ultrasound emitters and a sound file composed of USVs and background noise, confirm that the two ultrasound emitters exhibit the same sound pressure level using a calibration sound (e.g., a 75-kHz pure tone) before performing the behavioral test.
    5. When reproducing a sound file composed of two streams of USVs, adjust the two generated sound pressure levels to the same level, before testing.

6. Two-choice Test

  1. Place the ultrasound emitters behind the meshes of the test box.
  2. Close the gates to rooms A and B with an acrylic board, and habituate the female subject to the neutral zone for 30 min. Cover the box with acrylic board to avoid that the mouse can escape.
  3. Start video recording using a CCD camera mounted above the box. The camera (not shown in Figure 1) covers the area of all three compartments.
  4. Remove the gate and cover-board and allow the female to explore freely the test box, including the sound zones.
  5. Once the female has investigated both meshes, and has returned to the neutral zone, start playing a 20 sec sound file repeatedly for 5 or 10 min.
  6. Conduct behavioral monitoring for 5 or 10 min.
  7. To reduce undesired olfactory cues deposited from the previous subject, clean the test cages between the tests with 70% ethanol.
  8. Switch the place of ultrasound emitters A and B randomly to avoid inherent side bias effect towards rooms A or B.

7. Statistical Analyses

  1. Using behavioral event-scoring software, analyze the following parameters: total number of entries in each room; total duration of stay in each middle zone; total duration of stay in each sound zone; and total duration of search of each mesh in front of ultrasound emitter. Figure 1 illustrates what is meant by “middle zone” and “sound zone.”
    Note: In cases where the mouse stays on the dividing line between the two zones (Figure 1, dashed line) decide the location by the direction of the head. When the head faces the mesh side, it is scored as a stay in the sound zone.
  2. For each behavioral parameter, compare responses for rooms A and B using a Wilcoxon signed-rank test, or paired t-tests with a significance level of 0.05.

Determining Ultrasonic Vocalization Preferences in Mice using a Two-choice Playback Test

Learning Objectives

The USVs recorded from one BALB-male (161 syllables per 20 sec), as well as background noise were used as playback sounds in the representative experiment shown in Figure 3. In this experiment, 7 female B6 mice were used at 9 weeks of age. To determine the best duration of testing of female response to playback sounds, the behavioral parameters were analyzed separately for the first and last five min of the total 10 min test time.

First, there was no significant difference in total duration of stay in rooms A or B during investigation time before playback (Figure 3A), demonstrating that there was no side bias.The results also showed that there was no difference between the background-noise side and the male-USVs side in the number of room entries, analyzing the first 5 min, the last 5 min, and total testing time (Figure 3B). Figure 3C shows cumulative seconds of duration of stay in each room during playback (i.e., total duration of stay in the middle zone, and in the sound zone). The subjects spent significantly longer time in the BALB male-USV side than in the background-noise side when analyzing the first 5 min (p = 0.043), or the total testing time (p = 0.043). There were no significant differences in these parameters when analyzing by last 5 min. There were no significant differences between the background-noise side and the male-USVs side in the middle zone (Figure 3D). However, B6 females spent significantly longer time in the sound zone and searching the mesh in the BALB male-USV side, compared to the background-noise side, when analyzing the first 5 min (Sound zone, p = 0.018, Figure 3E; Mesh, p = 0.018, Figure 3F) or total testing time (Sound zone, p = 0.028, Figure 3E; Mesh, p = 0.043, Figure 3F). The results clearly demonstrate that a B6 female approaches more the reproduced male-USVs than the background noise, particularly in the first 5 min.

This two-choice test is useful to compare the characteristics of USVs. In a previous study, this test was used to determine USV preference of B6 and BALB female mice for USVs from males of these strains11. When using a playback combination of USVs from a B6 (133 syllables per 20 sec) and a BALB (108 syllables per 20 sec) male, female mice of each of these strains showed longer searching times for the USVs of males of the other strain than of their own one (Figure 4).

Figure 2
Figure 2. Measured Sound Pressure Level (SPL) Generated by the nc-Si Emitter as a Function of Frequency. An almost constant SPL of approximately 80 – 90 dB is observed between 40 and 160 kHz. AC input power is 1.3 W in this case. The emitter was placed at a distance of 20 mm from a high-frequency condenser microphone and aligned with its center. This figure has been modified from Kihara19. Please click here to view a larger version of this figure.

Figure 3
Figure 3. B6 Female Response to Background Noise and BALB Male USVs. (A) Total duration of stay in rooms A or B during investigation time before playback. (B) Number of room entries during playback. (C) Total duration of stay in the rooms. (D) Total duration of stay in the middle zone. (E) Total duration of stay in the sound zone. (F) Total duration of searching the meshes. Measurements of each individual are given in dot plots; horizontal bars in each plot indicate the mean; n = 7; * indicate significant differences (p <0.05) between background noise and male USVs for the parameters analyzed; Wilcoxon signed-rank tests. Please click here to view a larger version of this figure.

Figure 4
Figure 4. Female Response to USVs of Males from a Different Strain vs. the Same Strain. B6 (n = 6) and BALB (n = 10) females in diestrus exposed to male-soiled bedding before testing showed longer duration search times for the other strain USVs. Values shown are mean + standard error; * indicate significant differences (p <0.05); Wilcoxon signed-rank tests. This figure has been modified from Asaba14. Please click here to view a larger version of this figure.

List of Materials

Soundproof chamber Muromachi Kikai
Small cage CLEA Japan CL-0113-1
Middle cage CLEA Japan CL-0103-1
Ultrasound condenser microphones Avisoft Bioacoustics CM16/CMPA
A/D converter Avisoft Bioacoustics UltraSoundGate116H
Audio software Avisoft Bioacoustics RECORDER USGH
Adobe Audition 3.0 / Audio editing software Adobe Systems Adobe Audition 3.0
Nc-Si emitter Original not commercially available but it is planned to be so in near future
D/A converter National Instruments NI USB-6251 BNC
Attenuator Original
Amplifier Yamatake
PC Windows 7 professional Intel® core i7-2600K CPU @ 3.4GHz, 8GB RAM, 64-bit operating system
Event recorder Excel-macro / Event-scoring software original Programmed by Naoto Akagawa & Takeru Yamamoto
CCD Camera
Rubber plates (made of elastomer resin) Tokyo bouon TI-75BK B4 Cut them to the proper size http://www.piano-bouon.jp/shopping/?pid=1329272401-447630&ca=6&p=3
Giemsa's azur eosin methylene blue solution Merck Millipore 1.09204.0500

Lab Prep

Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference.

First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts.

Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference.

First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts.

Procedure

Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference.

First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts.

Tags