Dieses Protokoll stellt das Design und die Evaluierung innovativer dreidimensionaler Elektroden für Wasserstoffperoxid-Brennstoffzellen unter Verwendung von Au-galvanisiertem Kohlefasergewebe und Ni-Schaum-Elektroden vor. Die Forschungsergebnisse unterstreichen das Potenzial von Wasserstoffperoxid als vielversprechender Kandidat für nachhaltige Energietechnologien.
In einer eingehenden Untersuchung von membranlosen Brennstoffzellen auf Basis von Wasserstoffperoxid(H2O2FCs) wird gezeigt, dass Wasserstoffperoxid (H2O2),eine kohlenstoffneutrale Verbindung, elektrochemisch zerlegt wird, um H2O, O2 und elektrische Energie zuerzeugen. Die einzigartigen Redoxeigenschaften vonH2O2machen es zu einem praktikablen Kandidaten für nachhaltige Energieanwendungen. Das vorgeschlagene membranlose Design adressiert die Einschränkungen herkömmlicher Brennstoffzellen, einschließlich der Komplexität der Herstellung und der Designherausforderungen. Eine neuartige dreidimensionale Elektrode, die mittels Galvaniktechniken synthetisiert wird, wird vorgestellt. Diese Elektrode besteht aus Au-galvanisiertem Kohlefasergewebe in Kombination mit Ni-Schaum und weist eine verbesserte elektrochemische Reaktionskinetik auf, was zu einer erhöhten Leistungsdichte für H2O2-FCs führt. Die Leistung von Brennstoffzellen ist eng mit dem pH-Wert der Elektrolytlösung verbunden. Über FC-Anwendungen hinaus bergen solche Elektroden Potenzial in tragbaren Energiesystemen und als Katalysatoren mit großer Oberfläche. Diese Studie unterstreicht die Bedeutung der Elektrodentechnik für die Optimierung des Potenzials vonH2O2als umweltfreundliche Energiequelle.
Eine Brennstoffzelle ist ein elektrochemisches Gerät, das Brennstoff und Oxidationsmittel verwendet, um Chemikalien in elektrische Energie umzuwandeln. FCs haben einen höheren Wirkungsgrad bei der Energieumwandlung als herkömmliche Verbrennungsmotoren, da sie nicht an den Carnot-Zyklus1 gebunden sind. Durch die Verwendung von Brennstoffen wie Wasserstoff (H2)2, Borhydrid-Wasserstoff (NaBH 4)3 und Ammoniak (NH3)4 sind FCs zu einer vielversprechenden Energiequelle geworden, die umweltfreundlich ist und eine hohe Leistung erzielen kann, was ein erhebliches Potenzial zur Verringerung der menschlichen Abhängigkeit von fossilen Brennstoffen bietet. Die BZ-Technologie steht jedoch vor besonderen Herausforderungen. Ein weit verbreitetes Problem ist die interne Rolle einer Protonenaustauschmembran (PEM) im FC-System, die als Schutz gegen interne Kurzschlüsse dient. Die Integration einer elektrolytischen Membran trägt zu höheren Herstellungskosten, internem Schaltungswiderstand und architektonischer Komplexitätbei 5. Darüber hinaus führt die Umwandlung von Single-Compartment-FCs in Multi-Stack-Arrays zu zusätzlichen Komplikationen aufgrund des komplizierten Prozesses der Integration von Durchflusskanälen, Elektroden und Platten zur Verbesserung der Leistungs- und Stromausgänge5.
In den letzten Jahrzehnten wurden konzertierte Anstrengungen unternommen, um diese membranbezogenen Herausforderungen anzugehen und das FC-System zu rationalisieren. Insbesondere das Aufkommen membranloser FC-Konfigurationen mit laminaren Gleichströmungen bei niedrigen Reynoldszahlen hat eine innovative Lösung geboten. In solchen Anordnungen fungiert die Grenzfläche zwischen zwei Strömungen als “virtuelle” protonenleitende Membran6. Laminar-Flow-basierte FCs (LFFCs) wurden umfassend untersucht und nutzen die Vorteile der Mikrofluidik 7,8,9,10. LFFCs erfordern jedoch strenge Bedingungen, einschließlich eines hohen Energieaufwands für das Pumpen laminarer Kraftstoffe/Oxidationsmittel, der Minderung des Reaktantenübergangs in fluidischen Strömungen und der Optimierung hydrodynamischer Parameter.
In jüngster Zeit hat H2O2 als potenzieller Brennstoff und Oxidationsmittel an Interesse gewonnen, da es kohlenstoffneutral ist und Wasser (H2O) und Sauerstoff (O2) bei Elektrooxidations- und Elektroreduktionsprozessen an Elektroden11,12 liefert. H2O2kann unter Verwendung eines Zwei-Elektronen-Reduktionsverfahrens oder durch eines Zwei-Elektronen-Oxidationsprozesses aus Wasser12 in Massenproduktion hergestellt werden. Anschließend kann flüssigerH2O2-Kraftstoffim Gegensatz zu anderen gasförmigen Kraftstoffen in die bestehende Benzininfrastruktur integriert werden 5. Außerdem ermöglicht es die H2O2-Disproportionierungsreaktion,H2O2sowohl als Brennstoffals auch als Oxidationsmittel zu dienen. Figur 1A zeigt einen schematischen Aufbau einer einfachen H2O2FC-Architektur. Im Vergleich zu herkömmlichen FCs 2,3,4 nutzt derH2O2FC die Vorteile der Geräte-“Einfachheit”. Yamasaki et al. demonstrierten membranlose H2O2-FCs, die sowohl als Brennstoff als auch als Oxidationsmittel dienen. Der beschriebene Mechanismus der elektrischen Energieerzeugung hat Forschungsgemeinschaften dazu inspiriert, diese Forschungsrichtung fortzusetzen6. In der Folge wurden Elektrooxidations- und Elektroreduktionsmechanismen unter Verwendung vonH2O2als Brennstoff und Oxidationsmittel durch die folgenden Reaktionen dargestellt:13,14
In den sauren Medien:
Anode: H2O2 →O2 + 2H++2E-; Ea1 = 0,68 V vs. SHE
Kathode: H2O2 + 2H++2E– → 2H2O; Ea2 = 1,77 V vs. SIE
Gesamt: 2 H 2 O 2 → 2H 2 O + O2
In den Basismedien:
H2O 2 + OH- → HO 2– + H 2O
Anode: HO2– + OH- → O2 +H2 O + 2E–; Eb1 = 0,15 V vs. SIE
Kathode: HO2– +H2O+ 2e- → 3OH–; Eb2 = 0,87 V vs. SIE
Gesamt: 2 H 2 O 2 → 2H 2 O + O2
Abbildung 1B veranschaulicht das Funktionsprinzip von H2O2FCs.H2O2 spendet Elektronen an der Anode und nimmt Elektronen an der Kathode auf. Der Elektronentransfer zwischen Anode und Kathode erfolgt über einen externen Stromkreis, was zur Erzeugung von Elektrizität führt. Das theoretische Leerlaufpotential (OCP) vonH2O2FC beträgt 1,09 V in sauren Medien und0,62 V in basischen Medien13. Zahlreiche experimentelle Ergebnisse zeigten jedoch niedrigere Werte von bis zu 0,75 V in sauren Medien und 0,35 V in basischen Medien im Vergleich zur theoretischen OCP. Diese Beobachtung kann auf das Vorhandensein eines gemischten Potentialszurückgeführt werden 13. Darüber hinaus kann die Leistung und Stromabgabe vonH2O2-FCs aufgrund der begrenzten katalytischen Selektivität der Elektroden nicht mit den genannten FCs 2,3,4 konkurrieren. Bemerkenswert ist jedoch, dass die derzeitige H2O2-FC-TechnologieH2-, NaBH4– und NH3-FCs in Bezug auf die Gesamtkosten übertreffen kann, wie in Tabelle 1 dargestellt. Daher bleibt die verbesserte katalytische Selektivität von Elektroden für die H2O2-Elektrooxidation und Elektroreduktion eine große Herausforderung für diese Geräte.
In dieser Studie führen wir eine dreidimensionale Elektrode mit poröser Struktur ein, um die Wechselwirkung zwischen der Elektrode und demH2O2-Kraftstoffzu verbessern, mit dem Ziel, die Reaktionsgeschwindigkeit zu erhöhen und die Leistung und Stromabgabe zu verbessern. Wir untersuchen auch den Einfluss des pH-Werts der Lösung und derH2O2-Konzentration auf die Leistung des FC. Das in dieser Studie verwendete Elektrodenpaar besteht aus einem vergoldeten Kohlefasergewebe und Nickelschaum. Die strukturelle Charakterisierung erfolgt mittels Röntgenbeugung (XRD) und Rasterelektronenmikroskopie (REM), wobei das Leerlaufpotential (OCP), die Polarisation und die Ausgangsleistungskurven als primäre Parameter für die FC-Prüfung dienen.
Mehrere Parameter beeinflussen die Leistung einer membranlosen Wasserstoffperoxid-Brennstoffzelle über den pH-Wert der Lösung und dieH2O2-Konzentration hinaus erheblich. Die Wahl des Elektrodenmaterials bestimmt die elektrokatalytische Aktivität und Stabilität, während die Oberfläche der Elektrode die Reaktionsstellen verbessern kann. Die Betriebstemperatur beeinflusst die Reaktionskinetik, und die Durchflussrate der Reaktanten kann die Mischeffizienz von Kraftstoff und Oxidationsmittel bestim…
The authors have nothing to disclose.
Diese Arbeit wurde vom National Key Technologies R&D Program of China (2021YFA0715302 und 2021YFE0191800), der National Natural Science Foundation of China (61975035 und 52150610489) und der Science and Technology Commission der Stadt Shanghai (22ZR1405000) unterstützt.
Acetone | Merck & Co. Inc. (MRK) | 67-64-1 | solution for pre-process of materials |
Alcohol | Merck & Co. Inc. (MRK) | 64-17-5 | solution for pre-process of materials |
Carbon fiber cloth | Soochow Willtek photoelectric materials co.,Ltd. | W0S1011 | substrate material for electroplating method |
Electrochemistry station | Shanghai Chenhua Instrument Co., Ltd. | CHI600E | device for electroplating method and fuel cell performance characterization |
Gold chloride trihydrate | Shanghai Aladdin Biochemical Technology Co.,Ltd. | G141105-1g | main solute for electroplating method |
Hydrochloric acid | Sinopharm Chemical ReagentCo., Ltd | 10011018 | adjustment of solution pH |
Hydrogen peroxide | Sinopharm Chemical ReagentCo., Ltd | 10011208 | fuel of cell |
Nickel foam | Willtek photoelectric materials co.ltd(Soochow,China) | KSH-2011 | anode material for hydrogen peroxide fuel cell |
Potassium chloride | Shanghai Aladdin Biochemical Technology Co.,Ltd. | 10016308 | additives for electroplating method |
Scanning electron microscope | Carl Zeiss AG | EVO 10 | structural characterization for sample |
Sodium hydroxide | Sinopharm Chemical ReagentCo., Ltd | 10019718 | adjustment of solution pH |
X-Ray differaction machine | Bruker Corporation | D8 Advance | structural characterization for sample |