Özet

两性多发性硬化症建模:MOG35-55 诱导的实验性自身免疫性脑脊髓炎

Published: October 13, 2023
doi:

Özet

实验性自身免疫性脑脊髓炎是多发性硬化症使用最广泛的小鼠模型之一。在目前的方案中,两性的C57BL / 6J小鼠都用髓鞘少突胶质细胞糖蛋白肽免疫,主要导致尾巴和四肢的上行麻痹。在这里,我们讨论EAE诱导和评估的协议。

Abstract

多发性硬化症(MS)是一种影响中枢神经系统(CNS)的慢性自身免疫性炎症性疾病。它的特点是两性患病率不同,影响的女性多于男性,结果也不同,男性比女性更具侵略性。此外,多发性硬化症在临床方面、影像学和病理学特征方面具有高度异质性。因此,有必要利用实验动物模型,以尽可能多地研究病理学的各个方面。实验性自身免疫性脑脊髓炎 (EAE) 是小鼠中最常用的 MS 模型之一,模拟了不同的疾病特征,从免疫系统的激活到中枢神经系统损伤。在这里,我们描述了使用髓鞘少突胶质细胞糖蛋白肽35-55(MOG35-55)免疫在雄性和雌性C57BL / 6J小鼠中诱导EAE的方案,这导致慢性疾病的发展。我们还报告了免疫接种后28天(28 dpi)对这些小鼠的每日临床评分和运动表现的评估。最后,我们说明了中枢神经系统水平的一些基本组织学分析,重点关注脊髓作为疾病诱导损伤的主要部位。

Introduction

多发性硬化症(MS)是一种影响中枢神经系统(CNS)的慢性自身免疫性炎症性疾病。它显示存在炎症细胞的血管周围浸润、脱髓鞘、轴突缺失和胶质增生1。其病因尚不清楚,其临床方面、影像学和病理学特征表明该疾病具有显著的异质性2

由于其病因和复杂性未知,目前尚无动物模型概括人类多发性硬化症中显示的所有临床和放射学特征 3,4。然而,采用各种动物模型来研究 MS 3,4 的不同方面。在这些模型中,疾病的发生通常是非常人为的,并且人类和小鼠之间临床症状发作的时间范围不同。例如,在人类中,在临床表现出现之前,疾病的病理生理过程多年未被发现。相反,实验者可以在 MS 诱导后的数周甚至数天内检测到动物模型的症状 4.

三种基本动物模型产生多发性硬化症特征的脱髓鞘特征:病毒诱导的特征(例如,泰勒氏鼠脑脊髓炎病毒)、毒性物质诱导的特征(例如铜酮、溶血卵磷脂)以及实验性自身免疫性脑脊髓炎 (EAE) 的不同变体5。每个模型都有助于研究疾病的某些特定方面,但没有一个模型可以复制MS6的所有特征。因此,考虑到具体的实验需求和要解决的科学问题,选择正确的模型至关重要。

由于针对髓鞘衍生抗原的免疫程序,EAE是通过触发易感小鼠对中枢神经系统成分的自身免疫反应来诱导的。广泛的免疫病理学和神经病理学机制之间的相互作用导致免疫小鼠中 MS 的主要病理特征(即炎症、脱髓鞘、轴突丢失和神经胶质增生)的发展 7,8。小鼠在免疫接种后第二周左右开始出现临床症状,通常表现出从尾巴到肢体和前肢的上行麻痹。临床评分(即疾病相关缺陷积累的量化)通常使用 5 分制7 进行评估。

蛋白质或肽的主动免疫或脑致癌 T 细胞的被动转移可用于在具有不同遗传背景的小鼠(例如 SJL/J、C57BL/6 和非肥胖糖尿病 (NOD) 小鼠)中诱导 EAE。髓鞘蛋白脂质蛋白 (PLP)、髓鞘碱性蛋白 (MBP) 和髓鞘少突胶质细胞糖蛋白 (MOG) 是通常产生免疫原的自身中枢神经系统蛋白的例子。特别是,用免疫显性 PLP 表位 (PLP139151) 免疫的 SJL/J 小鼠发展为复发缓解 (RR) 病程,而用免疫显性 MOG35-55 肽免疫的 C57BL/6J 小鼠表现出慢性性质的 EAE 1。尽管存在一些局限性,例如提供有关 MS 进展、B 细胞在疾病中的作用、由内而外的机制或研究髓鞘再生的困难的信息很少,但 EAE 模型为理解自身免疫和神经炎症过程做出了巨大贡献,增加了 MS 领域的知识,从而允许开发针对这种疾病的新治疗方法46.

在本研究中,我们专注于一种特殊形式的活性 EAE,即髓鞘少突胶质细胞糖蛋白肽 35-55 (MOG35-55) 诱导的形式9101112。MOG35-55 诱导的 EAE 模拟了一种慢性 MS 形式。免疫后,小鼠在免疫后第一周内经历无症状阶段,然后疾病通常在免疫后的第二周出现,而在免疫后的第三周和第四周之间,疾病变成慢性的,不可能从累积的缺陷中完全恢复7,8,13.有趣的是,在文献中的大多数研究中,男性和女性在发病率、发病、病程或进展方面没有观察到差异14,即使比较男性和女性疾病的研究较少。

相比之下,在人类中,已知这些参数具有强烈的性别二态性 2。多发性硬化症影响女性多于男性;然而,男性通常会患上更具侵袭性的疾病2。这一证据表明,性腺激素起着重要而复杂的作用15;然而,性激素在病理学中的作用和作用机制仍不清楚。此外,来自动物模型的数据支持雌激素和雄激素都以性别特异性的方式对病理学的不同区域产生积极影响的观点16,17

一些研究还表明黄体酮具有神经保护、早髓鞘和抗炎作用18 ,尽管 MS 患者的证据很少18,但神经活性类固醇(即神经系统 从头 合成的类固醇,如孕烯醇酮、四氢孕酮和二氢孕酮)也可能影响病理过程19.总的来说,这些数据支持这样一种观点,即外周和中枢神经系统内部产生的性激素在疾病发生和进展中具有重要的性别特异性作用。因此,在本工作中,我们敦促收集雄性和雌性动物的单独数据。

从组织病理学的角度来看,脊髓白质是该模型中 CNS 损伤的主要部位,其特征是单核炎症浸润和脱髓鞘的多灶性汇合区域8。因此,在描述该方案在C57BL / 6J小鼠中诱导MOG35-55诱导的EAE时,我们将考虑两性的疾病结果,并提供一些关于脊髓的组织病理学见解。

Protocol

本工作中的动物护理和处理是根据 2010年 9 月 22 日欧盟理事会指令 (2010/63/UE) 进行的;本研究中报告的所有程序均已获得意大利卫生部 (407/2018-PR) 和都灵大学伦理委员会(项目编号 360384)的批准。我们建议按照 Kilkenny 等人最初于 2010 年发表的 ARRIVE 指南进行实验设计20.在开始之前,请确保有必要的材料可用(请参阅 材料表)。在高压灭菌器中对用于制?…

Representative Results

免疫接种后的EAE随访评估如下。 体重和食物摄入量双因素方差分析(ANOVA)(性别和时间作为自变量)显示,两性EAE动物的BW均有所下降,尤其是在诱导后第二周内(F(1,57)= 4.952,p < 0.001; 图2A)。然而,BW中的性二态性始终保持不变(图2A)。就 BW 的百分比而言 (F(1,5…

Discussion

我们描述的 MOG35-55 诱导的 EAE 方案导致 C57BL/6J 小鼠慢性 MS的发展 7,8,13。在这些具有代表性的结果中,我们报告说,接受免疫程序的男女动物都患上了慢性形式的疾病(即,它们在疾病发作后没有完全恢复,它们积累了缺陷,并且在慢性期保持CS至少为1.5)。

即使许多研究报告该模型1…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 Ministero dell’Istruzione、dell’Università e della Ricerca – MIUR 项目 Dipartimenti di Eccellenza 2018-2022 和 2023-2027 到神经科学系 Rita Levi Montalcini 的支持;Cavalieri-Ottolenghi 基金会,意大利奥尔巴萨诺。BB 是皮埃蒙特地区 INFRA-P (n.378-35) (2022-2023) 和 PRIN 2020 – 20203AMKTW 的研究员。我们感谢 Fondazione per la Ricerca Biomedica Onlus (FORB) 的支持。出版费得到了Distretto Rotaract 2031的善意捐赠,特别是都灵北东扶轮社的捐赠。我们感谢伊莱恩·米勒(Elaine Miller)校对我们的手稿。

Materials

18 G x 1 ½“ 1.2 x 40 mm needle for the glass syringe  Terumo TER-HYP-18G-112-PIN
Digital camera connected to the optical microscope NIKON DS-U1 digital camera
Electronic precision balance Merck Mod. Kern-440-47N, resolution 0.1 g
Eosin Y Sigma-Aldrich HT110216
Glass syringe pipet “ultra asept” 10 ml Sacco System  L003465
Glassware (i.e., becker to prepare the emulsion) VWR 213-1170, 213-1172
Hematoxylin (Mayer’s) Sigma-Aldrich MHS32 Filter before using it. 
Image analysis Software Fiji
Incomplete Freund’s adjuvant (IFA) Sigma-Aldrich F5506 Store at +4 °C. 
Isoflurane Wellona Pharma This drug is used as inhalational anaesthetic.
Male and female C57BL/6J mice Jackson Laboratory, Envigo Age 8-10 weeks, optimal body weight of ~20 g. 
Microtome Leica HistoCore BIOCUT R
Mounting Medium  Merck 107961
Mouse Rotarod Ugo Basile  #47600
Mycobacterium tuberculosis (MT), strain H37Ra  Difco Laboratories Inc.  231141 Store at +4 °C.
Myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) Espikem EPK1 Store at -80 °C diluted (2 mg/mL) in physiological solution; prepare it on the day of the immunization to avoid, as much as possible, alterations or contaminations. 
Optical microscope NIKON eclipse 90i
Paraformaldehyde (PFA) Sigma-Aldrich 158127 Store at +4 °C once diluted (4%) in phosphate buffer. 
Pertussis toxin (PT) Duotech  PT.181 Store at -80°C diluted (concentration 5 µg/mL) in physiological solution 
Physiological solution (sodium chloride 0.9% solution) B. Eurospital A 032182038 Store at +4 °C once opened.
Saline phosphate buffer (PBS) Thermo Scientific J61196.AP
Software for image acquisition  NIS-Element AR 2.10
Syringes U-100 0.5 mL with 30 G x 5/16” (0.30 x 8 mm) in fixed needle  Nipro SYMS-0.5U100-3008B-EC
Syringes U-100 1 mL with 26G x ½” (0.45 x 12.7 mm) in needle PIC 20,71,26,03,00,354
Vet ointment for eyes Lacrilube, Lacrigel Europhta
Xylazine Rompun This mixture of drug is used as injectable anaesthetic and sedative. 
Zolazepam and Tiletamine Zoletil  100 This drug is used as injectable anaesthetic, sedative, muscle relaxer, and analgesic

Referanslar

  1. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B., Ciccarelli, O. Multiple sclerosis. Lancet. 391 (10130), 1622-1636 (2018).
  2. Gold, S. M., Willing, A., Leypoldt, F., Paul, F., Friese, M. A. Sex differences in autoimmune disorders of the central nervous system. Semin immunopathol. 41 (2), 177-188 (2019).
  3. Smith, P. Animal models of multiple sclerosis. Curr Protoc. 1 (6), 185 (2021).
  4. Procaccini, C., De Rosa, V., Pucino, V., Formisano, L., Matarese, G. Animal models of Multiple Sclerosis. Eur J Pharmacol. 759, 182-191 (2015).
  5. Torre-Fuentes, L., et al. Experimental models of demyelination and remyelination. Neurologia. 35 (1), 32-39 (2020).
  6. Kipp, M., Nyamoya, S., Hochstrasser, T., Amor, S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol. 27 (2), 123-137 (2017).
  7. Racke, M. K. Experimental autoimmune encephalomyelitis (EAE). Curr Protoc Neurosci. , (2001).
  8. Constantinescu, C. S., Farooqi, N., O’Brien, K., Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 164 (4), 1079-1106 (2011).
  9. Montarolo, F., Perga, S., Martire, S., Bertolotto, A. Nurr1 reduction influences the onset of chronic EAE in mice. Inflamm Res. 64 (11), 841-844 (2015).
  10. Montarolo, F., et al. Effects of isoxazolo-pyridinone 7e, a potent activator of the Nurr1 signaling pathway, on experimental autoimmune encephalomyelitis in mice. PLoS One. 9 (9), 108791 (2014).
  11. Furlan, C., et al. Analysis of the gadolinium retention in the experimental autoimmune encephalomyelitis (EAE) murine model of multiple sclerosis. J Trace Elem Med Biol. 68, 126831 (2021).
  12. Desole, C., et al. Engineering, characterization, and biological evaluation of an antibody targeting the HGF receptor. Front Immunol. 12, 775151 (2021).
  13. Voskuhl, R. R., MacKenzie-Graham, A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci. 15, 1024058 (2022).
  14. McCombe, P. A., Greer, J. M. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It’s complicated. Front Immunol. 13, 1059833 (2022).
  15. Ascherio, A., Munger, K. L. Epidemiology of multiple sclerosis: from risk factors to prevention-an update. Semin Neurol. 36 (2), 103-114 (2016).
  16. Spence, R. D., Voskuhl, R. R. Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol. 33 (1), 105-115 (2012).
  17. Laffont, S., Garnier, L., Lélu, K., Guéry, J. -. C. Estrogen-mediated protection of experimental autoimmune encephalomyelitis: Lessons from the dissection of estrogen receptor-signaling in vivo. Biomed J. 38 (3), 194-205 (2015).
  18. Avila, M., Bansal, A., Culberson, J., Peiris, A. N. The role of sex hormones in multiple sclerosis. Eur Neurol. 80 (1-2), 93-99 (2018).
  19. Collongues, N., Patte-Mensah, C., De Seze, J., Mensah-Nyagan, A. -. G., Derfuss, T. Testosterone and estrogen in multiple sclerosis: from pathophysiology to therapeutics. Expert Rev Neurother. 18 (6), 515-522 (2018).
  20. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8 (6), 1000412 (2010).
  21. Shaw, M. K., Zhao, X., Tse, H. Y. Overcoming unresponsiveness in experimental autoimmune encephalomyelitis (EAE) resistant mouse strains by adoptive transfer and antigenic challenge. J Vis Exp. (62), e3778 (2012).
  22. Bittner, S., Afzali, A. M., Wiendl, H., Meuth, S. G. Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. J Vis Exp. (86), (2014).
  23. Downton, P., Early, J. O., Gibbs, J. E. Circadian rhythms in adaptive immunity. İmmünoloji. 161 (4), 268-277 (2020).
  24. McLean, A. C., Valenzuela, N., Fai, S., Bennett, S. A. L. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J Vis Exp. (67), e4389 (2012).
  25. Rahn, E. J., Iannitti, T., Donahue, R. R., Taylor, B. K. Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ. 5 (1), 4 (2014).
  26. Bonaldo, B., et al. Effects of perinatal exposure to bisphenol A or S in EAE model of multiple sclerosis. Cell Tissue Res. 392 (2), 467-480 (2023).
  27. vanden Berg, R., Laman, J. D., van Meurs, M., Hintzen, R. Q., Hoogenraad, C. C. Rotarod motor performance and advanced spinal cord lesion image analysis refine assessment of neurodegeneration in experimental autoimmune encephalomyelitis. J Neurosci Methods. 262, 66-76 (2016).
  28. Bolton, C., Smith, P. Defining and regulating acute inflammatory lesion formation during the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. CNS Neurol Disord Drug Targets. 14 (7), 915-935 (2015).
  29. Glaser, J. R., Glaser, E. M. Neuron imaging with Neurolucida–a PC-based system for image combining microscopy. Comput Med Imaging Graph. 14 (5), 307-317 (1990).
  30. Kennedy, H. S., Puth, F., Van Hoy, M., Le Pichon, C. A method for removing the brain and spinal cord as one unit from adult mice and rats. Lab Anim (NY). 40 (2), 53-57 (2011).
  31. Watson, C., Paxinos, G., Kayalioglu, G., Heise, C., Watson, C., Paxinos, G., Kayalioglu, G. Chapter 16 – Atlas of the mouse spinal cord. The Spinal. , 308-379 (2009).
  32. Khan, A., et al. Suppression of TRPV1/TRPM8/P2Y nociceptors by withametelin via downregulating MAPK signaling in mouse model of vincristine-induced neuropathic pain. Int J Mol Sci. 22 (11), 6084 (2021).
  33. Bergamaschi, R. Prognostic factors in multiple sclerosis. Int Rev Neurobiol. 79, 423-447 (2007).
  34. Harbo, H. F., et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens. 63 (3), 237-247 (2004).
  35. Ryan, L., Mills, K. H. G. Sex differences regulate immune responses in experimental autoimmune encephalomyelitis and multiple sclerosis. Eur J Immunol. 52 (1), 24-33 (2022).
  36. Lasrado, N., et al. Mechanisms of sex hormones in autoimmunity: focus on EAE. Biol Sex Differ. 11 (1), 50 (2020).
  37. Hofstetter, H. H., Shive, C. L., Forsthuber, T. G. Pertussis toxin modulates the immune response to neuroantigens injected in incomplete Freund’s adjuvant: induction of Th1 cells and experimental autoimmune encephalomyelitis in the presence of high frequencies of Th2 cells. J Immunol. 169 (1), 117-125 (2002).
  38. Maria, Z., Turner, E., Agasing, A., Kumar, G., Axtell, R. C. Pertussis toxin inhibits encephalitogenic T-cell infiltration and promotes a B-cell-driven disease during Th17-EAE. Int J Mol Sci. 22 (6), 2924 (2021).
  39. Krementsov, D. N., et al. Studies in experimental autoimmune encephalomyelitis do not support developmental bisphenol a exposure as an environmental factor in increasing multiple sclerosis risk. Toxicol Sci. 135 (1), 91-102 (2013).
  40. Kummari, E., Nichols, J. M., Yang, E. -. J., Kaplan, B. L. F. Neuroinflammation and B-cell phenotypes in cervical and lumbosacral regions of the spinal cord in experimental autoimmune encephalomyelitis in the absence of pertussis toxin. Neuroimmunomodulation. 26 (4), 198-207 (2019).
  41. Huntemann, N., et al. An optimized and validated protocol for inducing chronic experimental autoimmune encephalomyelitis in C57BL/6J mice. J Neurosci Methods. 367, 109443 (2022).

Play Video

Bu Makaleden Alıntı Yapın
Bonaldo, B., Casile, A., Montarolo, F., Bertolotto, A. Modeling Multiple Sclerosis in the Two Sexes: MOG35-55-Induced Experimental Autoimmune Encephalomyelitis. J. Vis. Exp. (200), e65778, doi:10.3791/65778 (2023).

View Video