Los ensayos de laboratorio pueden aprovechar el valor pronóstico de la tomografía de coherencia óptica longitudinal (OCT) basada en imágenes multimodales de la degeneración macular relacionada con la edad (DMAE). Los ojos de donantes humanos con y sin DMAE se obtienen imágenes mediante OCT, color, oftalmoscopia láser de escaneo de reflectancia en el infrarrojo cercano y autofluorescencia en dos longitudes de onda de excitación antes de la sección del tejido.
Una secuencia de progresión para la degeneración macular relacionada con la edad (DMAE) aprendida a partir de imágenes clínicas multimodales (MMI) basadas en la tomografía de coherencia óptica (OCT) podría agregar valor pronóstico a los hallazgos de laboratorio. En este trabajo, se aplicaron OCT y MMI ex vivo a los ojos de donantes humanos antes de la sección del tejido retiniano. Los ojos fueron recuperados de donantes blancos no diabéticos de ≥80 años de edad, con un tiempo de muerte a preservación (DtoP) de ≤6 h. Los globos se recuperaron in situ, se marcaron con un trepano de 18 mm para facilitar la extracción de la córnea y se sumergieron en paraformaldehído al 4% tamponado. Las imágenes de fondo de ojo en color se adquirieron después de la extracción del segmento anterior con un endoscopio de disección y una cámara SLR que usaba iluminación trans, epi y flash a tres aumentos. Los globos se colocaron en un búfer dentro de una cámara diseñada a medida con una lente de 60 dioptrías. Se obtuvieron imágenes con OCT de dominio espectral (cubo de mácula de 30 °, espaciado de 30 μm, promedio = 25), reflectancia en el infrarrojo cercano, autofluorescencia de 488 nm y autofluorescencia de 787 nm. Los ojos de la DMAE mostraron un cambio en el epitelio pigmentario de la retina (EPR), con drusas o depósitos druenoides subretinianos (SDD), con o sin neovascularización, y sin evidencia de otras causas. Entre junio de 2016 y septiembre de 2017, se recuperaron 94 ojos derechos y 90 ojos izquierdos (DtoP: 3,9 ± 1,0 h). De los 184 ojos, el 40,2% tenía DMAE, incluyendo DMAE intermedia temprana (22,8%), atrófica (7,6%) y neovascular (9,8%), y el 39,7% tenía máculas poco notables. Las drusas, las SDD, los focos hiperreflectantes, la atrofia y las cicatrices fibrovasculares se identificaron mediante OCT. Los artefactos incluyeron opacificación tisular, desprendimientos (bacilar, retinal, EPR, coroideo), cambio quístico foveal, un EPR ondulado y daño mecánico. Para guiar la criosección, se utilizaron volúmenes de OCT para encontrar los puntos de referencia de la fóvea y la cabeza del nervio óptico y patologías específicas. Los volúmenes ex vivo se registraron con los volúmenes in vivo seleccionando la función de referencia para el seguimiento ocular. La visibilidad ex vivo de la patología observada in vivo depende de la calidad de conservación. En 16 meses, se recuperaron y estadificaron 75 ojos de donantes de DtoP rápida en todas las etapas de la DMAE utilizando métodos clínicos de IMM.
Quince años de manejo de la degeneración macular neovascular relacionada con la edad (DMAE) con terapia anti-VEGF bajo la guía de la tomografía de coherencia óptica (OCT) ha ofrecido nuevos conocimientos sobre la secuencia de progresión y la microarquitectura de esta causa prevalente de pérdida de visión. Un reconocimiento clave es que la DMAE es una enfermedad tridimensional que involucra la retina neurosensorial, el epitelio pigmentario de la retina (EPR) y la coroides. Como resultado de las imágenes de OCT de los pacientes del ensayo y los ojos de los pacientes clínicos tratados, ahora se reconocen las características de la patología más allá de las observadas por la fotografía de fondo de ojo en color, un estándar clínico durante décadas. Estos incluyen neovascularización intrarretiniana (neovascularización macular tipo 31, anteriormente proliferación angiomatosa), depósitos drusenoides subretinianos (SDD, también llamados pseudodrusas reticulares)2, múltiples vías de destino del EPR3,4 y células de Müller intensamente glióticas en la atrofia 5,6.
Los sistemas modelo que carecen de máculas (células y animales) recrean algunas rebanadas de esta compleja enfermedad 7,8,9. El éxito adicional en la mejora de la carga de la DMAE podría provenir del descubrimiento y la exploración de la patología primaria en los ojos humanos, la comprensión de la composición celular única de la mácula, seguido de la traducción a sistemas modelo. Este informe retrata una colaboración de tres décadas entre un laboratorio de investigación académica y un banco de ojos. Los objetivos de los métodos de caracterización tisular descritos en este documento son dobles: 1) informar la evolución de la tecnología de diagnóstico al demostrar la base de la apariencia del fondo de ojo y las fuentes de señales de imagen con microscopía, y 2) clasificar las muestras de DMAE para técnicas de descubrimiento molecular dirigidas (inmunohistoquímica) y no dirigidas (espectrometría de masas de imágenes, IMS y transcriptómica espacial) que preservan la fóvea y la fóvea y perifovea ricas en conos y barras. Dichos estudios podrían acelerar la traducción a OCT clínica, para lo cual es posible una secuencia de progresión y un seguimiento longitudinal a través del seguimiento ocular. Esta tecnología, que está diseñada para monitorear los efectos del tratamiento, registra escaneos de una visita clínica a la siguiente utilizando vasos retinianos. Vincular la OCT con seguimiento ocular con los resultados de laboratorio obtenidos con técnicas destructivas podría proporcionar un nuevo nivel de valor pronóstico a los hallazgos moleculares.
En 1993, el laboratorio de investigación capturó fotografías en color del fondo de ojo postmortem en la película10. Este esfuerzo fue inspirado por la excelente fotomicroscopía e histología de la retina periférica humana por Foos y colegas 11,12,13 y las extensas correlaciones clinicopatológicas de DMAE por Sarks et al.14,15. A partir de 2009, se adoptaron imágenes multimodales ex vivo (MMI) ancladas en OCT de dominio espectral. Esta transición fue inspirada por los esfuerzos similares de otros 16,17 y especialmente por la comprensión de que gran parte de la ultraestructura descrita por los Sarks estaba disponible en tres dimensiones, con el tiempo, en la clínica 18,19. El objetivo era adquirir ojos con máculas adheridas en un marco de tiempo razonable para estudios con buena potencia de fenotipos a nivel celular en la retina, RPE y coroides. La intención era ir más allá de las estadísticas “por ojo” a “por tipo de lesión”, un estándar influenciado por los conceptos de “placa vulnerable” de la enfermedad cardiovascular20,21.
El protocolo en este informe refleja la experiencia con casi 400 pares de ojos de donantes accedidos en varias corrientes. En 2011-2014, se creó el sitio web del Proyecto MACULA de histopatología de DMAE, que incluye espesores de capas y anotaciones de 142 especímenes archivados. Estos ojos se conservaron de 1996 a 2012 en un fijador de glutaraldehído-paraformaldehído para histología de resina epoxi de alta resolución y microscopía electrónica. Todos los fundi habían sido fotografiados en color cuando se recibieron y fueron reimaginados por OCT justo antes de la histología. Se utilizó un soporte para ojos diseñado originalmente para estudios del nervio óptico22 para acomodar un punzón de tejido de espesor total de 8 mm de diámetro centrado en la fóvea. Se cargaron en el sitio web exploraciones B de OCT a través del centro foveal y un sitio 2 mm superior, correspondiente a histología en los mismos niveles, además de una fotografía de fondo de ojo en color. La elección de los planos OCT fue dictada por la prominencia de la patología DMAE bajo la fóvea23 y la prominencia de las SDD en áreas ricas en varillas superiores a la fóvea24,25.
A partir de 2013, los ojos fotografiados con IMM anclada en OCT durante la vida estaban disponibles para correlaciones clinicopatológicas directas. La mayoría (7 de 10 donantes) involucraron a pacientes en una práctica de derivación de retina (autor: K.B.F.), que ofrecía un registro de directivas avanzadas para pacientes interesados en donar sus ojos después de la muerte con fines de investigación. Los ojos fueron recuperados y preservados por el banco de ojos local, transferidos al laboratorio y preparados de la misma manera que los ojos del Proyecto MACULA. Los volúmenes clínicos de OCT pre-mortem fueron leídos sin problemas en el laboratorio, alineando así las características patológicas observadas durante la vida con las características observadas bajo el microscopio26.
A partir de 2014, la recolección prospectiva de ojos comenzó con la detección de DMAE en ojos de donantes sin antecedentes clínicos, pero conservados durante un límite de tiempo definido (6 h). Para este propósito, el soporte del ojo se modificó para acomodar todo un globo. Esto redujo la posibilidad de desprendimiento alrededor de los bordes cortados del punzón de 8 mm utilizado anteriormente. Los ojos se conservaron en paraformaldehído tamponado al 4% para inmunohistoquímica y se transfirieron al 1% al día siguiente para el almacenamiento a largo plazo. En 2016-2017 (antes de la pandemia), se recuperaron 184 ojos de 90 donantes. Las estadísticas e imágenes de este informe se generan a partir de esta serie. Durante la era de la pandemia (cierres y secuelas de 2020), las colecciones prospectivas para la transcriptómica y las colaboraciones de IMS continuaron a un ritmo reducido, esencialmente utilizando los métodos de 2014.
Existen otros métodos para la evaluación ocular del donante. El Minnesota Grading System (MGS)27,28 se basa en el sistema clínico AREDS para la fotografía de fondo de ojo en color 29. Las limitaciones de este método incluyen la combinación de DMAE atrófica y neovascular en una etapa de “DMAE tardía”. Además, el MGS implica la extirpación de la retina neurosensorial antes de la fotodocumentación de la coroides del EPR. Este paso desaloja las SDD en diversos grados30,31 y elimina la correspondencia espacial de la retina externa y su sistema de soporte. Por lo tanto, los esfuerzos para vincular la demanda metabólica y la señalización de la retina a la patología en el EPR-coroides pueden verse obstaculizados. El Sistema de Utah implementó MMI utilizando fotografía en color ex vivo y OCT para categorizar los ojos destinados a la disección en regiones para extracciones de ARN y proteínas32. Aunque es preferible a las extracciones enteras del ocular, el área de 3 mm de diámetro con mayor riesgo de progresión de la DMAE33,34 representa solo el 25% de un punzón centrado en la fóvea de 6 mm de diámetro. Por lo tanto, las técnicas que pueden localizar los hallazgos en referencia a la fóvea, como la sección seriada para inmunohistoquímica, son ventajosas.
Utilizando un enfoque de detección basado en la población durante un período de 16 meses en la era pre-COVID, fue posible adquirir 75 ojos de donantes con DMAE. Todos fueron recuperados con un DtoP corto y escalonados usando MMI anclado en OCT. El criterio de edad (>80 años) está fuera del rango de edad típico para las recuperaciones de tejidos destinadas a córneas trasplantables. A pesar de la edad avanzada, nuestros criterios dieron como resultado ojos en todas las etapas de la DMAE. Muchos fenotipos de EPR son …
The authors have nothing to disclose.
Agradecemos a Heidelberg Engineering por la instrumentación y el diseño del soporte del ojo original, a Richard F. Spaide MD por la introducción a las imágenes multimodales basadas en OCT, a Christopher Girkin MD por facilitar el acceso a los dispositivos de imágenes clínicas y a David Fisher por la Figura 1. La recuperación de los ojos de donantes humanos para la investigación fue apoyada por las subvenciones de los Institutos Nacionales de Salud (NIH) R01EY06019 (C.A.C.), P30 EY003039 (Pittler), R01EY015520 (Smith), R01EY027948 (C.A.C., T.A.) R01EY030192 (Li), R01EY031209 (Stambolian) y U54EY032442 (Spraggins), IZKF Würzburg (N-304, T.A.), la EyeSight Foundation of Alabama, la International Retinal Research Foundation (C.A.C.), la Arnold and Mabel Beckman Initiative for Macular Research (C.A.C.) y Research to Prevent Blindness AMD Catalyst (Schey).
Beakers, 250 mL | Fisher | # 02-540K | |
Bottles, 1 L, Pyrex | Fisher | # 10-462-719 | storage for preservative |
Bunsen burner or heat source | Eisco | # 17-12-818 | To melt wax |
Camera, digital | Nikon D7200 | D7200 | |
Computer and storage | Apple | iMac Pro; 14 TB external hard drive | Image storage |
Container, insulated | Fisher | # 02-591-45 | For wet ice |
Containers, 2 per donor, 40 mL | Fisher | Sameco Bio-Tite 40 mL # 13-711-86 | For preservative |
Crucible, quartz 30 mL | Fisher | # 08-072D | Hold globe for photography |
Cylinder, graduate, 250 mL | Fisher | # 08-549G | |
Disinfectant cleaning supplies | https://www.cardinalhealth.com/en/product-solutions/medical/infection-control/antiseptics.html | ||
Eye holder with lens and mounting bracket | contact J. Messinger | jeffreymessinger@uabmc.edu | custom modification of Heidelberg Engineering original design |
Face Protection Masks | Fisher | # 19-910-667 | |
Forceps, Harmon Fix | Roboz | # RS-8247 | |
Forceps, Micro Adson | Roboz | # RS-5232 | |
Forceps, Tissue | Roboz | # RS-5172 | |
Glass petri dish, Kimax | Fisher | # 23064 | |
Gloves Diamond Grip | Fisher | # MF-300 | |
Gowns GenPro | Fisher | # 19-166-116 | |
Image editing software | Adobe | Photoshop 2021, Creative Suite | |
KimWipes | Fisher | # 06-666 | |
Lamps, 3 goosenecks | Schott Imaging | # A20800 | |
Microscope, stereo | Nikon | SMZ 1000 | for dissection |
Microscope, stereo | Olympus | SZX9 | color fundus photography |
Paraformaldehyde, 20% | EMS | # 15713-S | for preservative; dilute for storage |
pH meter | Fisher | # 01-913-806 | |
Phosphate buffer, Sorenson’s, 0.2 M pH 7.2 | EMS | # 11600-10 | |
Ring flash | B & H Photo Video | Sigma EM-140 DG | |
Ruby bead, 1 mm diameter | Meller Optics | # MRB10MD | |
Safety Glasses 3M | Fisher | # 19-070-940 | |
Scanning laser ophthalmoscope | Heidelberg Engineering | HRA2 | |
Scissors, curved spring | Roboz | # RS-5681 | |
Sharps container | Fisher | # 1482763 | |
Shutter cord, remote | Nikon | MC-DC2 | |
Spectral Domain OCT device | Heidelberg Engineering | Spectralis HRA&OCT | https://www.heidelbergengineering.com/media/e-learning/Totara-US/files/pdf-tutorials/2238-003_Spectralis-Training-Guide.pdf |
Stainless steel ball bearing, 25.4 mm diameter | McMaster-Carr | # 9529K31 | |
Tissue marking dye, black | Cancer Diagnostics Inc | # 0727-1 | |
Tissue slicer blades | Thomas Scientific | # 6767C18 | |
Trephine, 18-mm diameter | Stratis Healthcare | # 6718L | |
TV monitor (HDMI) and cord for digital camera | B&H Photo Video | BH # COHD18G6PROB | for live viewing and remote camera display features |
Wax, pink dental | EMS | # 72670 | |
Wooden applicators | Puritan | # 807-12 |