Özet

人小胶质细胞样细胞:使用人突触体从诱导多能干细胞和 体外 活细胞吞噬测定中分化

Published: August 18, 2022
doi:

Özet

该协议描述了人诱导多能干细胞(iPSC)成小胶质细胞样细胞进行 体外 实验的分化过程。我们还包括从iPSC衍生的下运动神经元生成人突触体的详细程序,该神经元可用作使用活细胞成像系统进行 体外 吞噬测定的底物。

Abstract

小胶质细胞是骨髓来源的常驻免疫细胞,在大脑微环境中维持稳态,已成为多种神经系统疾病的关键参与者。由于人类细胞供应极其有限,研究人类小胶质细胞在健康和疾病中是一项挑战。源自人类个体的诱导多能干细胞(iPSC)可用于规避这一屏障。在这里,展示了如何将人iPSCs分化为小胶质细胞样细胞(iMGs)以进行 体外 实验。这些iMG表现出小胶质细胞的预期和生理特性,包括小胶质细胞样形态,适当标志物的表达和活性吞噬作用。此外,还提供了用于分离和标记源自人 iPSC 衍生的下运动神经元(i3LMN)的突触体底物的文档。活细胞纵向成像测定用于监测用pH敏感染料标记的人突触体的吞噬,从而可以研究iMG的吞噬能力。本文描述的方案广泛适用于研究人类小胶质细胞生物学和小胶质细胞对疾病的贡献的不同领域。

Introduction

小胶质细胞是中枢神经系统(CNS)中的常驻免疫细胞,在CNS的发展中起着至关重要的作用。小胶质细胞在成人大脑中对于维持体内平衡和积极应对创伤和疾病过程也很重要。累积证据表明,小胶质细胞是多种神经发育和神经退行性疾病发病机制的关键因素12。尽管目前关于小胶质细胞生物学的知识主要来自小鼠模型,但最近的研究阐明了小鼠和人类小胶质细胞之间的重要差异,强调了开发技术来研究人类小胶质细胞的遗传学和生物学功能的必要性34。从解剖的原代组织中分离小胶质细胞会严重改变小胶质细胞的特性5,这可能会混淆用这些细胞获得的结果。该方法的总体目标是将人iPSCs分化为iMG,从而提供细胞培养系统在基础条件下研究人小胶质细胞。此外,本文还包括使用全人模型系统的吞噬作用测定,作为研究iMGs功能的手段,既作为质量控制措施,又评估疾病背景下的iMG功能障碍。

最近在文献678910中出现了从iPSC分化小胶质细胞的多种方案。某些方案的潜在缺点包括延长或长时间的分化,添加多种生长因子和/或复杂的实验程序6910。在这里,展示了一种“用户友好”的分化方法,该方法通过将iPSC分化为称为原始巨噬细胞前体(PMP)的前体细胞来概括小胶质细胞个体发生的各个方面711。PMP如前所述生成,本文12中提供了一些优化。PMP模仿MYB非依赖性卵黄囊衍生的巨噬细胞,巨噬细胞在胚胎发育过程中通过在血脑屏障关闭之前侵入大脑而产生小胶质细胞13。为了最终将PMP分化为iMG,我们使用了基于Haenseler等人和Brownjohn等人的协议的快速简化的单一培养方法,并进行了一些修改以产生一种有效的小胶质细胞分化方法,其中iMG稳健地表达富含小胶质细胞的标记78。这种分化方法可以在具有iPSC培养专业知识的实验室中复制,其研究目标是使用人类模型系统研究小胶质细胞生物学。

iPSC来源的小胶质细胞是用于 体外 实验的人小胶质细胞的生物学相关来源,是研究小胶质细胞典型功能(包括吞噬作用)的重要工具。小胶质细胞是大脑和中枢神经系统的专业吞噬细胞,它们清除细胞碎片、聚集蛋白和降解的髓磷脂14。小胶质细胞还通过吞噬突触在突触重塑中发挥作用,并通过病原体的吞噬作用防御外部感染1516。在该协议中,使用人突触体作为iMG吞噬的材料评估iMG的吞噬作用。为此,描述了分离源自人类i3LMN的突触体的描述。i3LMN衍生的人突触体用pH敏感染料标记,该染料允许在吞噬体加工和体外降解过程中定量位于酸性区室内的突触 。显示了使用活细胞显微镜的吞噬作用测定,用于实时监测小胶质细胞吞噬的动态过程。该功能测定为使用完整的人体系统研究健康和疾病中小胶质细胞吞噬作用的可能缺陷奠定了基础。

Protocol

注意:本协议中使用的所有试剂必须是无菌的,并且所有步骤必须在无菌条件下在生物安全柜中进行。所有iPSC细胞系以及维护和分化培养基均在材料表中进行了描述。下面图示的小胶质细胞分化方法基于先前发表的方案7,8,12,并在此描述新的修改。 1.小胶质细胞分化 <p class="j…

Representative Results

为了使用该协议生成iMG,重要的是从未分化的iPSC开始,这些iPSCs显示出紧凑的集落形态和明确的边缘(图2A)。如EB形成部分所述维持的解离iPSC将形成球形聚集体,称为EB,其大小将增长到分化的第4天(图2B)。一旦EB被收集并在适当的条件下接种以产生PMP,它们就会附着在Matrigel涂层的板上,并且一层细胞将扩散并围绕球形聚集体(图2C…

Discussion

此处描述的分化方案提供了一种有效的方法,可在~6-8周内获得iPSC衍生的小胶质细胞样细胞,具有高纯度和足够的产量,以进行免疫荧光实验和其他需要更多细胞数的测定。该协议在 1 周内产生了多达 1 × 106 iMG,这允许蛋白质和 RNA 提取以及相应的下游分析(例如,RNASeq、qRT-PCR、蛋白质印迹、质谱)。也就是说,该协议的局限性是iMG的产量可能会限制某些应用。可以实施额外的修饰以积?…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

作者感谢Michael Ward提供用于运动神经元分化的WTC11 hNIL iPSC系,感谢Jackson实验室提供用于小胶质细胞分化的KOLF2.1J WT克隆B03 iPSC系。我们还要感谢Dorothy Schafer在协议实施过程中的支持,Anthony Giampetruzzi和John Landers在活细胞成像系统方面的帮助,以及Hayden Gadd在修订期间的技术贡献和Jonathan Jung在这项研究中的合作。这项工作得到了UMASS Chan医学院的Dan和Diane Riccio神经科学基金和天使基金公司的支持。

Materials

Antibodies for immunofluorescence analysis
anti-IBA1 rabbit antibody Wako Chemical USA NC9288364 1:350 dilution
anti-P2RY12 rabbit antibody Sigma-Aldrich HPA014518 1:50 dilution
anti-TMEM119 rabbit antibody Sigma-Aldrich HPA051870 1:100 dilution
Antibodies for Western blot analysis
anti-β-Tubulin rabbit antibody Abcam ab6046 1:500 dilution
anti-Synaptophysin (SYP) rabbit antibody Abclonal A6344 1:1,000 dilution
anti-PSD95 mouse antibody Millipore MAB1596 1:500 dilution
Borate buffer components
Boric acid (100 mM) Sigma B6768
Sodium bicarbonate (NaHCO3) BioXtra Sigma-Aldrich S6297-250G
Sodium chloride (75 mM) Sigma  S7653
Sodium tetraborate (25 mM) Sigma 221732
Cell culture materials
6-well plates Greiner Bio-One 657160
40 μm Cell Strainers  Falcon 352340
100 mm x 20 mm Tissue Culture Treated CELLTREAT 229620
Cell Lifter, Double End, Flat Blade & Narrow Blade, Sterile CELLTREAT 229305
low adherence round-bottom 96-well plate Corning 7007
Primaria 24-well Flat Bottom Surface Modified Multiwell Cell Culture Plate Corning 353847,
Primaria 6-well Cell Clear Flat Bottom Surface-Modified Multiwell Culture Plate Corning 353846
Primaria 96-well Clear Flat Bottom Microplate Corning 353872
Cell dissociation reagents
Accutase  Corning 25058CI dissociation reagents used for lower motor neuron differentiation
TrypLE reagent Life Technologies 12-605-010 dissociation reagents used for microglia differentiation
UltraPure 0.5 M EDTA, pH 8.0 Invitrogen 15575020
Coating reagents for cell culture
Matrigel GFR Membrane Matrix Corning™ 354230 Referred as to extracellular matrix coating reagent
CellAdhere Laminin-521 STEMCELL Technology 77004 Referred as to laminin 521
Poly-D-Lysine Sigma P7405 Reconstitute to 0.1 mg/mL in borate buffer
Poly-L-Ornithine Sigma  P3655 Reconstitute to 1 mg/mL in borate buffer
Components of iPSC media
 mTeSR Plus Kit STEMCELL Technology 100-0276 To prepare iPSC media mixed the components to 1x
Components of EB media
BMP-4 Fisher Scientific PHC9534 final concentration 50 ng/mL
iPSC media final concentration 1x
ROCK inhibitor Y27632 Fisher Scientific BD 562822 final concentration 10 µM
SCF PeproTech 300-07 final concentration 20 ng/mL
VEGF PeproTech 100-20A final concentration 50 ng/mL
Components of PMP base media
GlutaMAX Gibco 35050061 final concentration 1x
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140122 final concentration 100 U/mL
X-VIVO 15 Lonza 12001-988 final concentration 1x
Components of PMP complete media
55 mM 2-mercaptoethanol Gibco 21985023 final concentration 55 µM
IL-3 PeproTech 200-03 final concentration 25 ng/mL
M-CSF PeproTech 300-25 final concentration 100 ng/mL
PMP base media final concentration 1x
Components of iMG base media
Advanced DMEM/F12 Gibco 12634010 final concentration 1x
GlutaMAX Gibco 35050061 final concentration 1x
N2 supplement, 100x Gibco 17502-048 final concentration 1x
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140122 final concentration 100 U/mL
Components of iMG complete media
55 mM 2-mercaptoethanol Gibco 21985023 final concentration 55 µM
IL-34 PeproTech or Biologend 200-34 or 577904 final concentration 100 ng/mL
iMG base media final concentration 1x
M-CSF PeproTech 300-25 final concentration 5 ng/mL
TGF-β PeproTech 100-21 final concentration 50 ng/mL
Components of Induction base media
DMEM/F12 with HEPES Gibco 11330032 final concentration 1x
GlutaMAX Gibco 35050061 final concentration 1x
N2 supplement, 100x Gibco 17502-048 final concentration 1x
Non-essential amino acids (NEAA), 100x Gibco 11140050 final concentration 1x
Components of Complete induction media
Compound E Calbiochem 565790 final concentration 0.2 μM and reconstitute stock reagent to 2 mM in 1:1 ethanol and DMSO
Doxycycline Sigma D9891 final concentration 2 μg/mL and reconstitute stock reagent to 2 mg/mL in DPBS
Induction base media final concentration 1x
ROCK inhibitor Y27632 Fisher Scientific BD 562822 final concentration 10 μM
Components of Neuron media
B-27 Plus Neuronal Culture System Gibco A3653401 final concentration 1x for media and suplemment
GlutaMAX Gibco 35050061 final concentration 1x
N2 supplement, 100x Gibco 17502-048 final concentration 1x
Non-essential amino acids (NEAA), 100x Gibco 11140050 final concentration 1x
iPSC lines used in this study
KOLF2.1J: WT clone B03 The Jackson Laboratories
WTC11 hNIL National Institute of Health
Synaptosome isolation reagents
BCA Protein Assay Kit Thermo Scientific Pierce 23227
dimethyl sulfoxide (DMSO) Sigma D2650
Syn-PER Synaptic Protein Extraction Reagent Thermo Scientific 87793 Referred as to cell lysis reagent for isolation of synaptosomes
Phagocytosis assay dyes
NucBlue Live Ready reagent Invitrogen  R37605
pHrodo Red, succinimidyl ester ThermoFisher Scientific  P36600 Referred as to pH-sensitive dye
Other cell-culture reagents
Trypan Blue, 0.4% Solution AMRESCO INC K940-100ML
Bovine serum albumin (BSA) Sigma 22144-77-0
BrdU Sigma B9285 Reconstitute to 40 mM in sterile water
Cytochalasin D Sigma final concentration 10 µM
DPBS with Calcium and magnesium Corning 21-030-CV
DPBS without calcium and magnesium Corning 21-031-CV Referred as to DPBS
KnockOut  DMEM/F-12 Gibco 12660012 Referred as to DMEM-F12 optimized for growth of human embryonic and induced pluripotent stem cells
Laminin Mouse Protein, Natural Gibco 23017015 Referred as to laminin
Software and Equipment
Centrifuge Eppendorf Model 5810R
Cytation 5 live cell imaging reader Biotek
Gen5 Microplate Reader and Imager Software Biotek version 3.03
Multi-Therm Heat-Shake Benchmark refer as tube shaker
Water sonicator Elma Mode Transsonic 310

Referanslar

  1. Heider, J., Vogel, S., Volkmer, H., Breitmeyer, R. Human iPSC-derived glia as a tool for neuropsychiatric research and drug development. International Journal of Molecular Sciences. 22 (19), 10254 (2021).
  2. Muzio, L., Viotti, A., Martino, G. Microglia in neuroinflammation and neurodegeneration: from understanding to therapy. Frontiers in Neuroscience. 15, 742065 (2021).
  3. Galatro, T. F., et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nature Neuroscience. 20 (8), 1162-1171 (2017).
  4. Gosselin, D., et al. An environment-dependent transcriptional network specifies human microglia identity. Science. 356 (6344), (2017).
  5. Haimon, Z., et al. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nature Immunology. 19 (6), 636-644 (2018).
  6. Abud, E. M., et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 94 (2), 278-293 (2017).
  7. Brownjohn, P. W., et al. Functional studies of missense TREM2 mutations in human stem cell-derived microglia. Stem Cell Reports. 10 (4), 1294-1307 (2018).
  8. Haenseler, W., et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports. 8 (6), 1727-1742 (2017).
  9. McQuade, A., et al. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Molecular Neurodegeneration. 13 (1), 1-13 (2018).
  10. Muffat, J., et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nature Medicine. 22 (11), 1358-1367 (2016).
  11. Haenseler, W., Rajendran, L. Concise review: modeling neurodegenerative diseases with human pluripotent stem cell-derived microglia. Stem Cells. 37 (6), 724-730 (2019).
  12. Wilgenburg, B. v., Browne, C., Vowles, J., Cowley, S. A. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PloS One. 8 (8), 71098 (2013).
  13. Hoeffel, G., Ginhoux, F. Ontogeny of tissue-resident macrophages. Frontiers in Immunology. 6, 486 (2015).
  14. Janda, E., Boi, L., Carta, A. R. Microglial phagocytosis and its regulation: a therapeutic target in Parkinson’s disease. Frontiers in Molecular Neuroscience. 11, 144 (2018).
  15. Schafer, D. P., Stevens, B. Microglia function in central nervous system development and plasticity. Cold Spring Harbor Perspectives in Biology. 7 (10), 020545 (2015).
  16. Nau, R., Ribes, S., Djukic, M., Eiffert, H. Strategies to increase the activity of microglia as efficient protectors of the brain against infections. Frontiers in Cellular Neuroscience. 8, 138 (2014).
  17. Fernandopulle, M. S., et al. Transcription factor-mediated differentiation of human iPSCs into neurons. Current Protocols in Cell Biology. 79 (1), 51 (2018).
  18. Gutbier, S., et al. Large-scale production of human IPSC-derived macrophages for drug screening. International Journal of Molecular Sciences. 21 (13), 4808 (2020).
  19. Sellgren, C., et al. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Molecular Psychiatry. 22 (2), 170-177 (2017).
  20. Schmidt, E. J., et al. ALS-linked PFN1 variants exhibit loss and gain of functions in the context of formin-induced actin polymerization. Proceedings of the National Academy of Sciences of the United States of America. 118 (23), (2021).
  21. Miksa, M., Komura, H., Wu, R., Shah, K. G., Wang, P. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. Journal of Immunological Methods. 342 (1-2), 71-77 (2009).

Play Video

Bu Makaleden Alıntı Yapın
Funes, S., Bosco, D. A. Human Microglia-like Cells: Differentiation from Induced Pluripotent Stem Cells and In Vitro Live-cell Phagocytosis Assay using Human Synaptosomes. J. Vis. Exp. (186), e64323, doi:10.3791/64323 (2022).

View Video