Özet

通过质谱法对白细胞中的心磷脂进行指纹识别,以快速诊断巴特综合征

Published: March 23, 2022
doi:

Özet

该协议显示了如何获得白细胞心磷脂的质谱“指纹”以诊断Barth综合征。单心磷脂与心磷脂比值升高的评估将 Barth 综合征患者与对照心力衰竭患者区分开来,敏感性和特异性为 100%。

Abstract

心磷脂(CL)是一种在其结构中携带四个脂肪酸链的二聚体磷脂,是线粒体的脂质标记物,其中它在内膜的功能中起着至关重要的作用。其代谢物单心磷脂(MLCL)在生理上几乎不存在于动物细胞的脂质提取物中,其外观是Barth综合征(BTHS)的标志,Barth综合征是一种罕见的,经常被误诊的遗传性疾病,在婴儿期导致严重的心肌病。这里描述的方法产生“心磷脂指纹图谱”,并允许对细胞脂质谱中CL和MLCL物种的相对水平进行简单测定。在白细胞的情况下,只需要1 mL血液 即可通过 基质辅助激光解吸电离测量MLCL / CL比率 – 飞行时间/质谱(MALDI-TOF / MS),只需在抽血后2小时内。该测定方法很简单,可以很容易地整合到临床生化实验室的常规工作中,以筛查BTHS。该试验显示 BTHS 的敏感性和特异性为 100%,使其成为一种合适的诊断试验。

Introduction

Barth综合征(BTHS)是一种罕见的X连锁疾病,其特征为早发性心肌病,骨骼肌病,生长迟缓,中性粒细胞减少,可变线粒体呼吸链功能障碍和线粒体结构异常12345。BTHS的患病率为每百万男性1例,目前全世界已知病例不到250例,尽管人们普遍认为该疾病被低估了26。BTHS 由定位于 Xq28.127,8 的 Tafazzin (TAFAZZIN) 基因的功能丧失突变引起,导致线粒体磷脂心磷脂 (CL) 重塑不足,这一过程通常导致高度对称和不饱和的酰基组成910。CL被认为是线粒体的标志性脂质,它是内膜的重要组成部分,对氧化磷酸化(即线粒体能量代谢),超复合物形成,蛋白质导入至关重要,并参与线粒体动力学,线粒体自噬和细胞凋亡111213141516.当TAFAZZIN功能丧失时,CL重塑失败,并且在BTHS患者的线粒体中出现特定的磷脂异常:成熟CL水平(CLm)降低,而单心磷脂(MLCL)水平升高和CL酰基组成改变(即未成熟的CL物种,CLi)发生。这导致MLCL / CL比率显着增加17

BTHS 的诊断通常很困难,因为该疾病呈现出极其多变的临床和生化特征,并且随着时间的推移,来自同一家庭和患者内部的受影响个体之间可能有所不同35。许多 BTHS 男孩的尿排泄水平非常高,3-甲基戊二酸 (3-MGCA),但随着时间的推移,患者的尿量可能正常或仅轻度升高3.然而,3-MGCA 升高是其他各种线粒体和非线粒体疾病的特征,例如 3-甲基谷氨酰辅酶 A 水合酶缺乏症(AUH 缺陷)、3-甲基戊二酸尿、肌张力障碍性耳聋、脑病、Leigh 样 (MEGDEL) 综合征、Costeff 综合征和扩张型心肌病伴共济失调 (DCMA) 综合征1819.因此,3-MCGA作为BTHS标志物的特异性较差以及患者的巨大变异性使得生化诊断不明确。

此外,已经描述了超过120种不同的TAFAZZIN突变导致该疾病5 ,因此,遗传诊断可能很复杂,缓慢且昂贵。此外,TAFAZZIN基因的分子分析在非编码或调节序列3中存在突变时可导致假阴性结果。BTHS可以通过确定(单)CL物种的相对数量和分布来明确测试,并通过TAFAZZIN基因测序确认,反之亦然。

诊断的实用测试是通过高效液相色谱(HPLC)和电喷雾电离/质谱(ESI / MS)分析在血斑2021中测量MLCL / CL比。单独测量 CL 水平不足以诊断,因为一些患者的 CL 水平接近正常,但 MLCL/CL 比值改变。因此,MLCL/CL 比值的测量对 BTHS 诊断具有 100% 的敏感性和特异性21。另一种基于HPLC和ESI / MS分析的经过验证的方法已经在白细胞22上建立,但是用于分离先前提取的脂质的复杂色谱技术以及仪器的昂贵限制了该分析仅限于少数临床实验室。所有这些因素,加上缺乏直接的诊断测试,导致了该病症的诊断不足。

MALDI-TOF/MS是脂质分析2324中的另一个有效工具。这种分析技术可用于直接获得各种生物样品的脂质谱,从而跳过提取和分离步骤2526272829,包括在用于MS成像应用的组织切片30。鉴于这一优势,开发了一种简单快速的诊断BTS的方法,通过分析具有MALDI-TOF / MS的完整白细胞中的线粒体CL来诊断28。通过红细胞沉降和裂解仅从1 mL全血中分离白细胞非常简单,不需要特殊的设备或试剂。此外,描述了适用于微量白细胞的快速脂质“迷你提取”方案,以确保成功获得具有比从完整白细胞获得的具有更高信噪比(S / N)的更清晰的MS信号的光谱28。这一进一步的步骤只需要很少的时间,即使在灵敏度较差的MS仪器上进行分析,也可以进行可重复的分析。总之,这里描述的分析方法需要最少的样品制备,因为可以跳过耗时且劳动密集型的色谱脂质分离,从而加快测试速度。

Protocol

在巴里(意大利)的Policlinic医院收集了健康献血者和心力衰竭患者的血液样本,而BTHS患者的样本则由布里斯托尔皇家儿童医院(英国)的国家卫生服务英国BTHS诊所获得。获得健康捐赠者,患者和父母(在适当情况下)的书面知情同意以及各自伦理委员会的批准。 注意:如果不立即使用,血液(在K-EDTA凝胶管中)可以在4°C下储存长达24-48小时。 1. 通…

Representative Results

在这项研究中,描述了一种从1 mL全血中分离白细胞并通过MALDI-TOF / MS获得CL指纹图谱的简单而快速的方法(见 图2)。 图3 显示了从对照组和BTHS幼儿获得的白细胞的代表性CL指纹图谱的比较,在CL和MLCL质量(m / z)范围内。 表1 列出了在这些质谱中检测到的CL和MLCL物种。 TAFAZZIN基因中的缺陷通常决定了BTHS特异性的…

Discussion

巴特综合征是一种先天性的新陈代谢错误和一种改变生活的疾病,可能被低估26。如前所述,一个促成因素可能是缺乏直接的诊断测试。在这里,描述了一种简单快捷的通过MALDI-TOF/MS测量白细胞中MLCL/CL比值的方法,用于BTHS筛选。此外,MALDI-TOF质谱仪广泛分布在世界各地的临床实验室中,不需要很高的分析专业知识31<sup…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

我们感谢BTHS的个人及其家人参与我们的研究。我们感谢美国巴特综合症基金会和英国巴特综合症信托基金会的支持,以及在布里斯托尔年会上帮助收集血液样本。这项研究由美国巴特综合症基金会,Barth Italia Onlus和Apulia地区资助。

Materials

1,1′,2,2′-tetratetradecanoyl cardiolipin Avanti Polar Lipids 750332 Lipid standard for MALDI-TOF calibration
1,1′2,2′-tetra- (9Z-octadecenoyl) cardiolipin Avanti Polar Lipids 710335 Lipid standard for MALDI-TOF calibration
1,2-di- (9Z-hexadecenoyl)-sn-glycero-3-phosphoethanolamine Avanti Polar Lipids 878130 Lipid standard for MALDI-TOF calibration
1,2-ditetradecanoyl-sn-glycero-3-phosphate Avanti Polar Lipids 830845 Lipid standard for MALDI-TOF calibration
1,2-ditetradecanoyl-snglycero-3-phospho-(1′-rac-glycerol) Avanti Polar Lipids 840445 Lipid standard for MALDI-TOF calibration
1,2-ditetradecanoyl-sn-glycero-3-phospho-L-serine Avanti Polar Lipids 840033 Lipid standard for MALDI-TOF calibration
2-Propanol, ACS reagent, ≥99.5% Merck Life Science S.r.l. 190764
9-Aminoacridine hemihydrate, 98% Acros Organics 134410010
Acetonitrile, ACS reagent, ≥99.5% Merck Life Science S.r.l. 360457
Chloroform, ACS reagent, ≥99.8% Merck Life Science S.r.l. 319988
Dextran from Leuconostoc spp. Mr 450,000-650,000 Merck Life Science S.r.l. 31392
Flex Analysis 3.3 Bruker Daltonics Software
MALDI-TOF mass spectrometer Microflex LRF Bruker Daltonics
Microsoft Excel Microsoft Office Software
OmniPur 10X PBS Liquid Concentrate Merck Life Science S.r.l. 6505-OP
Potassium chloride, ACS reagent, 99.0-100.5% Merck Life Science S.r.l. P3911
Sodium chloride, ACS reagent, ≥99.0% Merck Life Science S.r.l. S9888

Referanslar

  1. Barth, P. G., et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory-chain abnormalities in cultured fibroblasts. Journal of Inherited Metabolic Disease. 19 (2), 157-160 (1996).
  2. Steward, C. G., et al. syndrome (X linked cardiac and skeletal myopathy, neutropenia, and organic aciduria): rarely recognised, frequently fatal [abstract]. Archives of Disease in Childhood. 89, 48 (2004).
  3. Clarke, S. L. N., et al. Barth syndrome. Orphanet Journal of Rare Diseases. 8, 23 (2013).
  4. Zegallai, H. M., Hatch, G. M. Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Molecular and Cellular Biochemistry. 476 (3), 1605-1629 (2021).
  5. Taylor, C., et al. Clinical presentation and natural history of Barth Syndrome: An overview. Journal of Inherited Metabolic Disease. 45 (1), 7-16 (2022).
  6. Miller, P. C., Ren, M., Schlame, M., Toth, M. J., Phoon, C. A. Bayesian analysis to determine the prevalence of Barth syndrome in the pediatric population. The Journal of Pediatrics. 217, 139-144 (2020).
  7. Bione, S., et al. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nature Genetics. 12 (4), 385-389 (1996).
  8. Whited, K., Baile, M. G., Currier, P., Claypool, S. M. Seven functional classes of Barth Syndrome mutation. Human Molecular Genetics. 22 (3), 483-492 (2013).
  9. Schlame, M., Ren, M., Xu, Y., Greenberg, M. L., Haller, I. Molecular symmetry in mitochondrial cardiolipins. Chemistry and Physics of Lipids. 138 (1-2), 38-49 (2005).
  10. Schlame, M., Xu, Y. The function of Tafazzin, a mitochondrial phospholipid-lysophospholipid acyltransferase. Journal of Molecular Biology. 432 (18), 5043-5051 (2020).
  11. Schlame, M., Rua, D., Greenberg, M. L. The biosynthesis and functional role of cardiolipin. Progress in Lipid Research. 39 (3), 257-288 (2000).
  12. Mileykovskaya, E., Dowhan, W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochimica et Biophysica Acta. 1788 (10), 2084-2091 (2009).
  13. Claypool, S. M., Koehler, C. M. The complexity of cardiolipin in health and disease. Trends in Biochemical Sciences. 37 (1), 32-41 (2011).
  14. Ren, M., Phoon, C. K., Schlame, M. Metabolism and function of mitochondrial cardiolipin. Progress in Lipid Research. 55, 1-16 (2014).
  15. Paradies, G., Paradies, V., Ruggiero, F. M., Petrosillo, G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: Molecular and pharmacological aspects. Cells. 8 (7), 728 (2019).
  16. Acoba, M. G., Senoo, N., Claypool, S. M. Phospholipid ebb and flow makes mitochondria go. The Journal of Cell Biology. 219 (8), 03131 (2020).
  17. Schlame, M., et al. Phospholipid abnormalities in children with Barth syndrome. Journal of the American College of Cardiology. 42 (11), 1994-1999 (2003).
  18. Wortmann, S. B., et al. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. Journal of Inherited Metabolic Disease. 36 (6), 923-928 (2013).
  19. Ikon, N., Ryan, R. O. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism. Journal of Inherited Metabolic Disease. 39 (5), 749-756 (2016).
  20. Kulik, W., et al. Bloodspot assay using HPLC-tandem mass spectrometry for detection of Barth syndrome. Clinical Chemistry. 54 (2), 371-378 (2008).
  21. Vaz, F. M., et al. An improved functional assay in blood spot to diagnose Barth syndrome using the monolysocardiolipin/cardiolipin ratio. Journal of Inherited Metabolic Disease. 45 (1), 29-37 (2022).
  22. Bowron, A., et al. Diagnosis of Barth syndrome using a novel LC-MS/MS method for leukocyte cardiolipin analysis. Journal of Inherited Metabolic Disease. 36 (5), 741-746 (2013).
  23. Sun, G., et al. Matrix assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Analytical Chemistry. 80 (19), 7576-7585 (2008).
  24. Leopold, J., Popkova, Y., Engel, K. M., Schiller, J. Recent developments of useful MALDI matrices for the mass spectrometric characterization of lipids. Biomolecules. 8 (4), 173 (2018).
  25. Angelini, R., Babudri, F., Lobasso, S., Corcelli, A. MALDI-TOF/MS analysis of archaebacterial lipids in lyophilized membranes dry-mixed with 9-aminoacridine. The Journal of Lipid Research. 51 (9), 2818-2825 (2010).
  26. Angelini, R., et al. Lipidomics of intact mitochondria by MALDI-TOF MS. The Journal of Lipid Research. 53 (7), 1417-1425 (2012).
  27. Angelini, R., Vormieter, G., Corcelli, A., Fuchs, B. A fast method for the determination of PC/LPC ratio in intact horse serum by MALDI-TOF-MS: an easy-to-follow lipid biomarker of inflammation. Chemistry and Physics of Lipids. 183, 169-175 (2014).
  28. Angelini, R., et al. Cardiolipin fingerprinting of leukocytes by MALDI-TOF/MS as a screening tool for Barth syndrome. The Journal of Lipid Research. 56 (9), 1787-1794 (2015).
  29. Lobasso, S., et al. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Frontiers in Physiology. 12, 748895 (2021).
  30. Angelini, R., et al. Visualizing cholesterol in the brain by on-tissue derivatization and quantitative mass spectrometry imaging. Analytical Chemistry. 93 (11), 4932-4949 (2021).
  31. Greco, V., et al. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Review of Proteomics. 15 (8), 683-696 (2018).
  32. Duncan, M., DeMarco, M. L. MALDI-MS: Emerging roles in pathology and laboratory medicine. Clinical Mass Spectrometry (Del Mar, Calif). 13, 1-4 (2019).

Play Video

Bu Makaleden Alıntı Yapın
Angelini, R., Russo, S., Corcelli, A., Lobasso, S. Fingerprinting Cardiolipin in Leukocytes by Mass Spectrometry for a Rapid Diagnosis of Barth Syndrome. J. Vis. Exp. (181), e63552, doi:10.3791/63552 (2022).

View Video