Nous décrivons une méthode expérimentale préclinique pour évaluer la neuromodulation métabolique induite par la stimulation cérébrale profonde aiguë avec le FDG-TEP in vivo . Ce manuscrit comprend toutes les étapes expérimentales, de la chirurgie stéréotaxique à l’application du traitement de stimulation et à l’acquisition, au traitement et à l’analyse des images TEP.
La stimulation cérébrale profonde (SCP) est une technique neurochirurgicale invasive basée sur l’application d’impulsions électriques aux structures cérébrales impliquées dans la physiopathologie du patient. Malgré la longue histoire de DBS, son mécanisme d’action et ses protocoles appropriés restent flous, soulignant la nécessité de recherches visant à résoudre ces énigmes. En ce sens, l’évaluation des effets in vivo de la SCP à l’aide de techniques d’imagerie fonctionnelle représente une stratégie puissante pour déterminer l’impact de la stimulation sur la dynamique cérébrale. Ici, un protocole expérimental pour des modèles précliniques (rats Wistar), combiné à une étude longitudinale [18F]-fluorodeoxyclucose positron emission tomography (FDG-PET), pour évaluer les conséquences aiguës de la DBS sur le métabolisme cérébral est décrit. Tout d’abord, les animaux ont subi une chirurgie stéréotaxique pour l’implantation bilatérale d’électrodes dans le cortex préfrontal. Une tomodensitométrie (TDM) post-chirurgicale de chaque animal a été acquise pour vérifier l’emplacement des électrodes. Après une semaine de récupération, un premier FDG-PET statique de chaque animal opéré sans stimulation (D1) a été acquis, et deux jours plus tard (D2), un deuxième FDG-PET a été acquis pendant que les animaux étaient stimulés. Pour cela, les électrodes ont été connectées à un stimulateur isolé après administration de FDG aux animaux. Ainsi, les animaux ont été stimulés pendant la période d’absorption du FDG (45 min), enregistrant les effets aigus de la SCP sur le métabolisme cérébral. Compte tenu de la nature exploratoire de cette étude, les images FDG-PET ont été analysées par une approche voxel basée sur un test T apparié entre les études D1 et D2. Dans l’ensemble, la combinaison de la SCP et des études d’imagerie permet de décrire les conséquences de la neuromodulation sur les réseaux neuronaux, aidant finalement à résoudre les énigmes entourant la SCP.
Le terme neurostimulation englobe un certain nombre de techniques différentes visant à stimuler le système nerveux avec un objectif thérapeutique1. Parmi elles, la stimulation cérébrale profonde (SCP) se distingue comme l’une des stratégies de neurostimulation les plus répandues dans la pratique clinique. La SCP consiste en la stimulation de noyaux cérébraux profonds avec des impulsions électriques délivrées par un neurostimulateur, implanté directement dans le corps du patient, à travers des électrodes placées dans la cible cérébrale pour être modulées par chirurgie stéréotaxique. Le nombre d’articles évaluant la faisabilité de l’application de la SCP dans différents troubles neurologiques et psychiatriques ne cesse de croître2, bien que seulement certains d’entre eux aient été approuvés par la Food and Drug Association (FDA) (c.-à-d. tremblement essentiel, maladie de Parkinson, dystonie, trouble obsessionnel-compulsif et épilepsie médicalement réfractaire)3 . En outre, un grand nombre de cibles cérébrales et de protocoles de stimulation sont à l’étude pour le traitement de la SCP de beaucoup plus de pathologies que celles officiellement approuvées, mais aucune d’entre elles n’est considérée comme définitive. Ces incohérences dans la recherche et les procédures cliniques de DBS peuvent en partie être dues à un manque de compréhension complète de son mécanisme d’action4. Par conséquent, d’énormes efforts sont déployés pour déchiffrer les effets in vivo de la SCP sur la dynamique cérébrale, car chaque avancée, aussi petite soit-elle, aidera à affiner les protocoles de SCP pour un plus grand succès thérapeutique.
Dans ce contexte, les techniques d’imagerie moléculaire ouvrent une fenêtre directe pour observer les effets neuromodulateurs in vivo de la SCP. Ces approches offrent la possibilité non seulement de déterminer l’impact de la SCP pendant son application, mais aussi de démêler la nature de ses conséquences, de prévenir les effets secondaires indésirables et l’amélioration clinique, et même d’adapter les paramètres de stimulation aux besoins du patient5. Parmi ces méthodes, la tomographie par émission de positrons (TEP) utilisant le 2-désoxy-2-[18F]fluoro-D-glucose (FDG) présente un intérêt particulier car elle fournit des informations spécifiques et en temps réel sur l’état d’activation des différentes régions du cerveau6. Plus précisément, l’imagerie FDG-PET fournit une évaluation indirecte de l’activation neuronale basée sur le principe physiologique du couplage métabolique entre les neurones et les cellules gliales6. En ce sens, plusieurs études cliniques ont rapporté des modèles d’activité cérébrale modulés par la SCP à l’aide de FDG-PET (voir3 pour la revue). Néanmoins, les études cliniques présentent facilement plusieurs inconvénients lorsqu’elles se concentrent sur les patients, tels que l’hétérogénéité ou les difficultés de recrutement, qui limitent fortement leur potentiel de recherche6. Ce contexte amène les chercheurs à utiliser des modèles animaux de conditions humaines pour évaluer les approches biomédicales avant leur application clinique ou, si elles sont déjà appliquées en pratique clinique, pour expliquer l’origine physiologique des bénéfices thérapeutiques ou des effets secondaires. Ainsi, malgré les grandes distances entre la pathologie humaine et l’état modélisé chez les animaux de laboratoire, ces approches précliniques sont essentielles pour une transition sûre et efficace vers la pratique clinique.
Ce manuscrit décrit un protocole expérimental de SCP pour des modèles murins, combiné à une étude longitudinale FDG-TEP, afin d’évaluer les conséquences aiguës de la SCP sur le métabolisme cérébral. Les résultats obtenus avec ce protocole peuvent aider à démêler les schémas modulateurs complexes induits sur l’activité cérébrale par DBS. Par conséquent, une stratégie expérimentale appropriée pour examiner in vivo les conséquences de la stimulation est fournie, permettant aux cliniciens d’anticiper les effets thérapeutiques dans des circonstances spécifiques, puis d’adapter les paramètres de stimulation aux besoins du patient.
Compte tenu des progrès dans la compréhension de la fonction cérébrale et des réseaux neuronaux impliqués dans la physiopathologie des troubles neuropsychiatriques, de plus en plus de recherches reconnaissent le potentiel de la SCP dans un large éventail de pathologies neurologiques2. Cependant, le mécanisme d’action de cette thérapie reste incertain. Plusieurs théories ont tenté d’expliquer les effets obtenus dans des circonstances pathologiques et de stimulation spécifiques, mais…
The authors have nothing to disclose.
Nous remercions Prof. Christine Winter, Julia Klein, Alexandra de Francisco et Yolanda Sierra pour leur soutien inestimable dans l’optimisation de la méthodologie décrite ici. MLS a été soutenu par le Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (numéro de projet PI17/01766 et numéro de subvention BA21/0030) cofinancé par le Fonds européen de développement régional (FEDER), « A way to make Europe »; CIBERSAM (numéro de projet CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (numéro de projet 2017/085); Fundación Mapfre; et Fundación Alicia Koplowitz. MCV a été soutenu par la Fundación Tatiana Pérez de Guzmán el Bueno en tant que boursier de cette institution, et le Programme conjoint de l’UE – Recherche sur les maladies neurodégénératives (JPND). La DRM a été soutenue par Consejería de Educación e Investigación, Comunidad de Madrid, cofinancée par le Fonds social européen « Investir dans votre avenir » (numéro de subvention PEJD-2018-PRE/BMD-7899). NLR a été soutenu par Instituto de Investigación Sanitaria Gregorio Marañón, « Programa Intramural de Impulso a la I+D+I 2019 ». Les travaux de médecine ont été soutenus par le Ministerio de Ciencia e Innovación (MCIN) et l’Instituto de Salud Carlos III (ISCIII) (PT20/00044). Le CNIC est soutenu par l’Instituto de Salud Carlos III (ISCIII), le Ministerio de Ciencia e Innovación (MCIN) et la Fondation Pro CNIC, et est un centre d’excellence Severo Ochoa (SEV-2015-0505).
7-Tesla Biospec 70/20 scanner | Bruker, Germany | SN0021 | MRI scanner for small animal imaging |
Betadine | Meda Pharma S.L., Spain | 644625.6 | Iodine solution (iodopovidone) |
Beurer IL 11 | Beurer | SN87318 | Infra-red light |
Bipolar cable 50 cm w/50 cm mesh covering up to 100 cm | Plastics One, USA | 305-305 (CM) | |
Bipolar cable TT2 50 cm up to 100 cm | Plastics One, USA | 305-340/2 | Bipolar cable TT2 50 cm up to 100 cm |
Buprex | Schering-Plough, S.A | 961425 | Buprenorphine (analgesic) |
Ceftriaxona Reig Jofré 1g IM | Laboratorio Reig Jofré S.A., Spain | 624239.1 | Ceftriaxone (antibiotic) |
Commutator | Plastics One, USA | SL2+2C | 4 Channel Commutator for DBS |
Concentric bipolar platinum-iridium electrodes | Plastics One, USA | MS303/8-AIU/Spc | Electrodes for DBS |
Driller | Bosh | T58704 | Driller |
FDG | Curium Pharma Spain S.A., Spain | —– | 2-[18F]fluoro-2-deoxy-D-glucose (PET radiotracer) |
Heating pad | DAGA, Spain | 23115 | Heating pad |
Ketolar | Pfizer S.L., Spain | 776211.9 | Ketamine (anesthetic drug) |
Lipolasic 2 mg/g | Bausch & Lomb S.A, Spain | 65277 | Ophthalmic lubricating gel |
MatLab R2021a | The MathWorks, Inc | Support software for SPM12 | |
MRIcro | McCausland Center for Brain Imaging, University of South Carolina, USA | v2.1.58-0 | Software for imaging preprocessing and analysis |
Multimodality Workstation (MMWKS) | BiiG, Spain | Software for imaging processing and analysis | |
Omicrom VISION VET | RGB Medical Devices, Spain | 731100 ReV B | Cardiorrespiratory monitor for small imaging |
Prevex Cotton buds | Prevex, Finland | —– | Cotton buds |
Sevorane | AbbVie Spain, S.L.U, Spain | 673186.4 | Sevoflurane (inhalatory anesthesia) |
Small screws | Max Witte GmbH | 1,2 x 2 DIN 84 A2 | Small screws |
Standard U-Frame Stereotaxic Instrument for Rat, 18° Ear Bar | Harvard Apparatus, USA | 75-1801 | Two-arms Stereotactic frame for rat |
Statistical Parametric Mapping (SPM12) | The Wellcome Center for Human Neuroimaging, UCL Queen Square Institute of Neurology, UK | SPM12 | Software for voxel-wise imaging analysis |
STG1004 | Multi Channel Systems GmbH, Germany | STG1004 | Isolated stimulator |
SuperArgus PET/CT scanner | Sedecal, Spain | S0026403 | NanoPET/CT scanner for small animal imaging |
Suture thread with needle, 1/º | Lorca Marín S.A., Spain | 55325 | Braided natural silk non-absorbable suture 1/0, with triangle needle |
Technovit 4004 (powder and liquid) | Kulzer Technique, Germany | 64708471; 64708474 | Acrylic dental cement for craniotomy tap |
Wistar rats (Rattus norvergicus) | Charles River, Spain | animal facility | Animal model used |
Xylagesic | Laboratorios Karizoo, A.A, Spain | 572599-4 | Xylazine (anesthetic drug) |
Normon S.A., Spain | 602910 | Mepivacaine in gel for topical use |