We describe a preclinical experimental method to evaluate metabolic neuromodulation induced by acute deep brain stimulation with in vivo FDG-PET. This manuscript includes all experimental steps, from stereotaxic surgery to the application of the stimulation treatment and the acquisition, processing, and analysis of PET images.
Deep brain stimulation (DBS) is an invasive neurosurgical technique based on the application of electrical pulses to brain structures involved in the patient's pathophysiology. Despite the long history of DBS, its mechanism of action and appropriate protocols remain unclear, highlighting the need for research aiming to solve these enigmas. In this sense, evaluating the in vivo effects of DBS using functional imaging techniques represents a powerful strategy to determine the impact of stimulation on brain dynamics. Here, an experimental protocol for preclinical models (Wistar rats), combined with a longitudinal study [18F]-fluorodeoxyclucose positron emission tomography (FDG-PET), to assess the acute consequences of DBS on brain metabolism is described. First, animals underwent stereotactic surgery for bilateral implantation of electrodes into the prefrontal cortex. A post-surgical computerized tomography (CT) scan of each animal was acquired to verify electrode placement. After one week of recovery, a first static FDG-PET of each operated animal without stimulation (D1) was acquired, and two days later (D2), a second FDG-PET was acquired while animals were stimulated. For that, the electrodes were connected to an isolated stimulator after administering FDG to the animals. Thus, animals were stimulated during the FDG uptake period (45 min), recording the acute effects of DBS on brain metabolism. Given the exploratory nature of this study, FDG-PET images were analyzed by a voxel-wise approach based on a paired T-test between D1 and D2 studies. Overall, the combination of DBS and imaging studies allows describing the neuromodulation consequences on neural networks, ultimately helping to unravel the conundrums surrounding DBS.
The term neurostimulation encompasses a number of different techniques aimed at stimulating the nervous system with a therapeutic objective1. Among them, deep brain stimulation (DBS) stands out as one of the most widespread neurostimulation strategies in clinical practice. DBS consists of the stimulation of deep brain nuclei with electrical pulses delivered by a neurostimulator, implanted directly into the patient's body, through electrodes placed into the brain target to be modulated by stereotactic surgery. The number of articles evaluating the feasibility of DBS application in different neurological and psychiatric disorders is continuously growing2, although only some of them have been approved by the Food and Drug Association (FDA) (i.e., essential tremor, Parkinson's disease, dystonia, obsessive-compulsive disorder, and medically refractory epilepsy)3. Furthermore, a large number of brain targets and stimulation protocols are under research for DBS treatment of many more pathologies than officially approved, but none of them are considered definitive. These inconsistencies in DBS research and clinical procedures may in part be due to a lack of full understanding of its mechanism of action4. Therefore, huge efforts are being made to decipher the in vivo effects of DBS on brain dynamics, as every advance, however small, will help refine DBS protocols for greater therapeutic success.
In this context, molecular imaging techniques open a direct window to observe in vivo neuromodulatory effects of DBS. These approaches provide the opportunity not only to determine the impact of DBS while it is being applied but also to unravel the nature of its consequences, prevent undesired side effects and clinical improvement, and even adapt stimulation parameters to the patient's needs5. Among these methods, positron emission tomography (PET) using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) is of particular interest because it provides specific and real-time information on the activation state of different brain regions6. Specifically, FDG-PET imaging provides an indirect evaluation of neural activation based on the physiological principle of metabolic coupling between neurons and glial cells6. In this sense, several clinical studies have reported DBS-modulated brain activity patterns using FDG-PET (see3 for review). Nevertheless, clinical studies easily incur several drawbacks when focusing on patients, such as heterogeneity or recruitment difficulties, which strongly limit their research potential6. This context leads researchers to use animal models of human conditions to evaluate biomedical approaches before their clinical translation or, if already applied in clinical practice, to explain the physiological origin of therapeutic benefits or side effects. Thus, despite the large distances between human pathology and the modeled condition in laboratory animals, these preclinical approaches are essential for a safe and effective transition into clinical practice.
This manuscript describes an experimental DBS protocol for murine models, combined with a longitudinal FDG-PET study, in order to assess the acute consequences of DBS on brain metabolism. The outcomes obtained with this protocol may help to unravel the intricate modulatory patterns induced on brain activity by DBS. Therefore, a suitable experimental strategy to examine in vivo the consequences of stimulation is provided, allowing clinicians to anticipate therapeutic effects under specific circumstances and then adapt stimulation parameters to the patient's needs.
Experimental animal procedures were conducted according to the European Communities Council Directive 2010/63/EU, and approved by the Ethics Committee for Animal Experimentation of the Hospital Gregorio Marañón. A graphical summary of the experimental protocol is shown in Figure 1A.
1. Brain target localization by in vivo neuroimaging
2. Stereotaxic surgery
CAUTION: Autoclave all surgical material, implants, and stereotaxic units before use, and disinfect the surgical area to avoid infections and complications which may affect animal welfare. Use sterile surgical gloves and cover the animal with sticky drapes to prevent contamination.
3. PET/CT imaging acquisition
NOTE: Each animal undergoes two PET/CT studies (i.e., in the absence and during DBS administration) under inhaled anesthesia to assess the acute effects induced by the electrical stimulation. Both scanning sessions follow the same imaging acquisition protocol, being performed 1 week after surgery (D1, without stimulation) and 2 days later (D2, during DBS).
4. Electrical stimulation administration
NOTE: Electrical stimulation is delivered during the FDG uptake period in the D2 imaging session. For this protocol, the stimulation was delivered with an isolated stimulator, with a high-frequency (130 Hz) electrical stimulation in a constant current mode, 150 µA, and a pulse width of 100 µs7,13,14.
Figure 1: Experimental design. (A) Summary of the experimental steps followed in this protocol. (B) Representative pictures of a holder adaptation for better fixation of the electrode, with (left) and without (right) an electrode. (C) Fused image of an MRI with a CT of an operated animal, showing the correct electrode placement in the medial prefrontal cortex (mPFC). (D) Screenshot of the oscilloscope screen showing the biphasic stimulation waveform. Please click here to view a larger version of this figure.
5. PET image processing and analysis
NOTE: Follow the same image processing on images from D1 and D2 to obtain comparable data for subsequent voxel-wise statistical analysis.
Figure 2: Micro PET/CT imaging registration workflow. Detailed steps of PET image spatial normalization processing for subsequent voxel-wise analysis with Statistical Parametric Mapping (SPM) software. Please click here to view a larger version of this figure.
The animals were sacrificed using CO2 at the end of the study or when the animal’s welfare was compromised. An example of a complete PET/CT study from an operated animal is shown in Figure 3. Thus, the electrode inserted into the rat brain can be clearly observed in the CT image shown in Figure 3A. This imaging modality provides good anatomical information and facilitates the registration of FDG-PET images, given that functional modalities tend to be blurrier than structural images (Figures 3A,B). In addition, a merged image of the FDG-PET and CT images of the same animal is shown in Figure 3C.
Figure 3: Micro PET/CT imaging of the rat brain with DBS electrodes implanted in the mPFC. (A) Sagittal section of a CT image. (B) Sagittal section of a FDG-PET image of the same animal as in A. (C) A fused PET/CT image resulted from overlaying A and B images spatially registered to the same stereotaxic space. Please click here to view a larger version of this figure.
The voxel-wise analysis performed with SPM12 software and provided here as an example consisted of a paired T-test between D1 (absence of DBS) and D2 (DBS during FDG uptake) studies, which actually belong to a previously published study8. Therefore, Figure 4 shows the brain metabolic differences between both PET sessions as T-maps superimposed on sequential 1 mm thick brain slices from an MRI registered to the reference CT image (CTref). These differences consisted of increases and decreases in FDG uptake showed as warm and cold colors, respectively. Also, a detailed summary of the statistical results obtained from the analysis is shown in Table 1. Here, we indicate the modulated brain region, the brain hemisphere in which the modulation is observed, the T statistic, the size of the cluster in the number of voxels (k), the direction of the modulation (i.e., hypermetabolic or hypometabolic changes), and the p-values obtained at peak and cluster levels. This type of table serves as a detailed description of the modulatory changes observed in the slice overlay figure.
Figure 4: Paired T-test results. T-maps resulting from the voxel-wise analysis overlaid on a T2 MRI registered to the same CTref, showing the metabolic changes induced by an acute DBS protocol (D2 vs. D1). The color bars at the bottom of the image represent T values corresponding to regional increases (warm colors) and decreases (cold colors) of FDG uptake (p < 0.005; k > 50 voxels). Abbrev.: AHiPM/AL – Amygdalohippocampal area posteromedial/anterolateral part, Au – Auditory Cortex, Bstm – Brainstem, Cpu – Caudate-putamen, HTh – Hypothalamus, L – Left hemisphere, PMCo – Posteromedial cortical amygdaloid nucleus, R – Right hemisphere, S1 – Primary somatosensory cortex. This figure has been modified with permission from Casquero-Veiga et al.8. Please click here to view a larger version of this figure.
D1 vs D2: Stimulation effect | |||||||
ROI | Side | T | k | ↓/↑ | p unc. peak level | FWE | FWE |
peak level | cluster level | ||||||
Bstm | R & L | 18.39 | 1549 | ↓ | <0.001 | 0.432 | <0.001 |
AHiPM/AL-PMCo – HTh | L | 10.39 | ↓ | <0.001 | 0.949 | ||
CPu | L | 37.56 | 738 | ↑ | <0.001 | 0.025 | <0.001 |
S1-Au | 10.53 | ↑ | <0.001 | 0.947 | |||
CPu-Pir | R | 17.74 | 695 | ↑ | <0.001 | 0.497 | <0.001 |
S1-Au | 10.45 | ↑ | <0.001 | 0.948 |
Table 1: Changes in brain metabolism after acute DBS in mPFC. D1 vs D2: Stimulation effect. Structures: AHiPM/AL: Amygdalohippocampal area posteromedial/anterolateral part, Au: Auditory Cortex, Bstm: Brainstem, CPu: Caudate-putamen, HTh: Hypothalamus, Pir: Piriform cortex, PMCo: Posteromedial cortical amygdaloid nucleus, S1: Primary somatosensory cortex. ROI: Region of interest. Side: Right (R) and Left (L). T: t value, k: cluster size. Glucose metabolism: Increase (↑) and Decrease (↓). p: p-value, unc.: uncorrected, FWE: Family wise error correction. This table has been modified with permission from Casquero-Veiga et al.8.
Given the advances in the understanding of brain function and the neural networks involved in the pathophysiology of neuropsychiatric disorders, more and more research is recognizing the potential of DBS in a wide range of neurologically-based pathologies2. However, the mechanism of action of this therapy remains unclear. Several theories have attempted to explain the effects obtained in specific pathological and stimulation circumstances, but the heterogeneity of the proposed studies makes it very difficult to reach definitive conclusions4. Therefore, despite great efforts, there is no real consensus, but the number of patients undergoing DBS intervention continues growing18. Then, understanding the DBS consequences in the brain in vivo will allow to unravel which stimulation parameters and protocols of stimulation are more adequate to the needs of each patient, hence obtaining a better success rate. In this context, non-invasive functional neuroimaging modalities, such as FDG-PET, are essential to shed light on what is really occurring under the direct influence of electrical stimulation in the brain. For instance, in the longitudinal protocol explained here, DBS is delivered during the radiotracer uptake period of the D2 PET image. Thus, comparison of the D2 (DBS-ON) and D1 (DBS-OFF) PET studies enables the visualization of the brain regions that are being modulated by the electrical stimulation in vivo, as the "metabolic trapping" properties of FDG allow recording the cumulative changes that occur directly during the stimulation13,19.
Altogether, this protocol describes a feasible strategy to evaluate the acute consequences of DBS in the brain in vivo, but the variety of DBS parameter combinations and protocols available is immense (e.g., continuous vs. intermittent treatments20, high vs. low-frequency stimulation21), and even the effects of the DBS may differ along with the treatment due to inferring direct changes in the brain network under the stimulation influence22. Furthermore, the number of possibilities becomes even greater considering the increasing number of pathologies for which DBS is recommended23. Therefore, longitudinal neuroimaging studies aiming to uncover the neural activation patterns that allow predicting the potential response to DBS treatment are of particular clinical relevance24,25. In this regard, there is a wide number of clinical and preclinical studies which have evaluated the therapeutic effects of different DBS protocols by FDG-PET (see3 for review). Thus, there are several examples in which the studied DBS protocol counteracts the brain metabolic pattern associated with the pathology under treatment, inducing an improvement of the patient symptoms and proving the clinical usefulness of DBS-PET approaches. An example of this is found in the stimulation of the subcallosal cingulate region (SCC) for patients with treatment-resistant depression. SCC is metabolically hyperactive in unmedicated patients with depression26, and this hyperactivation is normalized after remission of depression by pharmacological, psychotherapeutic, or DBS treatment27,28,29. Of importance, SCC metabolism was higher in those patients who responded to DBS before starting the stimulation in comparison to non-responders. This study showed an 80% accuracy in the prediction of the response to SCC-DBS29, highlighting the importance of imaging biomarkers in selecting potential patients for DBS. Therefore, the explained context reflects a history of clinical success of FDG-PET studies aiming to map the brain metabolic pattern of depression with the therapeutic outcomes obtained with SCC-DBS, which should set the basis for similar approaches focused on other neuropsychiatric disorders and DBS protocols in the future.
In this sense, in order to observe the physiological effects of DBS using FDG-PET, it is particularly relevant to carefully consider the specific timing of the DBS protocol to be scanned. Thus, despite applying the same DBS parameters and the same protocol, the timing for the image acquisition will clearly determine the origin of the observed modulation, which may lead to potential misunderstandings by not considering all the factors involved in the final response obtained8. Therefore, while the planning of surgery is determinant in laying the basis for the subsequent therapy, the design of an image acquisition protocol appropriate to the consequences of the stimulation under study is essential to fully understand the molecular mechanism underlying the stimulation treatment applied. Along these lines, several factors can drastically modify the response to a specific DBS protocol (e.g., stimulation parameters, electrode insertion, brain structure targeted, pathology under treatment, duration, and frequency of DBS sessions, etc.)7,8,30. The phenomena reflected by the data collected in the FDG-PET study will depend on the specific time in the course of therapy at which the images are acquired. Then, all these points open up different research opportunities to explore DBS-induced modulation and contribute to explaining the mechanisms underlying this therapy.
Thus, despite the great differences that separate rodent and human brains, adequate practices should be implemented at all levels, with the aim of developing translational protocols. In this sense, it should not be ignored that DBS requires a highly invasive surgery based on a craniotomy so that electrodes can access deep brain structures31. At this point, there are two important sources of infection and inflammatory reaction: on the one hand, the direct exposure of brain tissue during surgery and, on the other hand, the insertion of two exogenous elements into an internal organ, creating an insertional scar by their trajectory towards the stimulation target32. Therefore, sterilization of the surgical equipment, maintaining a clean operating area, and adequate postoperative care based on antibiotic and analgesic treatments33 are essential to ensure that the subject obtains the greatest benefit from the intervention and in the healthiest conditions. Furthermore, this is of particular relevance in FDG-PET imaging studies, as the occurrence of post-surgical complications can modify the pattern of radiotracer uptake given that inflammatory and infectious processes are clearly seen as hypermetabolic signals34, which may lead to a modified response to treatment or an overestimation of the modulation produced by DBS.
However, this experimental methodology is subjected to some limitations: First, DBS protocols are usually long-term, continuous, and chronic treatments. Here, a neuroimaging protocol is shown to evaluate the acute effects of DBS in real-time. Thus, the timing suggested for neuroimaging studies would not be adequate to obtain information on DBS-induced long-term modulation in near real-time. Nevertheless, it may lay the groundwork for developing different longitudinal approaches to serve as basic knowledge for understanding DBS-derived responses. Secondly, since healthy animals have been used to illustrate this method, the application of the explained techniques to different pathological conditions may require their adaptation to ensure better results and optimal welfare conditions. Finally, voxel-wise analyses require large sample sizes and/or strong correction factors to obtain reliable results, as they are always affected by a problem of multiple statistical comparisons. Nevertheless, the assessment of the consequences of DBS on brain metabolism using FDG-PET with a voxel-wise approach is a great advantage due to the intrinsic exploratory nature of this method, which allows for extensive whole-brain analyses without the need for any prior assumptions.
Despite the explained drawbacks of combining DBS and FDG-PET, these approaches provide a large window of opportunity. Thus, obtaining brain metabolic information non-invasively is a great advantage in the sense that neurophysiological data can be collected from the subject during stimulation and on many different occasions along with the DBS treatment. Moreover, FDG-PET is a neuroimaging technique in the clinical setting, which reinforces the translational approach that motivates this method. Likewise, the use of FDG-PET is a particularly suitable alternative since, unlike other imaging modalities, the signal obtained is not influenced by secondary distortions in the electric or magnetic fields derived from the neurostimulation system, which may impair both image quality and system performance24. On the other hand, research interest in evaluating the modulatory consequences of DBS is not limited to therapeutic benefits. In fact, since DBS is a focal, modulatory and non-permanent neurostimulation therapy, it may also help to unravel the neurofunctional activity pathways evaluated by molecular imaging techniques and in response to electrical stimuli provided by the syste35. This information could be particularly valuable in deciphering unresolved neurophysiological enigmas in healthy and pathological conditions. Finally, the methodology explained in this manuscript provides the ability to observe the effects of DBS-induced neuromodulation in vivo, being a powerful strategy to determine the impact of stimulation during its application. In short, understanding the in vivo effect of DBS will help to understand the desired and undesired effects of this treatment, predict clinical improvement, and ultimately adapt the stimulation protocols to the needs of each patient.
The authors have nothing to disclose.
We thank Prof. Christine Winter, Julia Klein, Alexandra de Francisco and Yolanda Sierra for their invaluable support in the optimization of the methodology here described. MLS was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (project number PI17/01766 and grant number BA21/0030) co- financed by European Regional Development Fund (ERDF), "A way to make Europe"; CIBERSAM (project number CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (project number 2017/085); Fundación Mapfre; and Fundación Alicia Koplowitz. MCV was supported by Fundación Tatiana Pérez de Guzmán el Bueno as scholarship holder of this institution, and EU Joint Programme – Neurodegenerative Disease Research (JPND). DRM was supported by Consejería de Educación e Investigación, Comunidad de Madrid, co-funded by European Social Fund "Investing in your future" (grant number PEJD-2018-PRE/BMD-7899). NLR was supported by Instituto de Investigación Sanitaria Gregorio Marañón, "Programa Intramural de Impulso a la I+D+I 2019". MD work was supported by Ministerio de Ciencia e Innovación (MCIN) and Instituto de Salud Carlos III (ISCIII) (PT20/00044). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).
7-Tesla Biospec 70/20 scanner | Bruker, Germany | SN0021 | MRI scanner for small animal imaging |
Betadine | Meda Pharma S.L., Spain | 644625.6 | Iodine solution (iodopovidone) |
Beurer IL 11 | Beurer | SN87318 | Infra-red light |
Bipolar cable 50 cm w/50 cm mesh covering up to 100 cm | Plastics One, USA | 305-305 (CM) | |
Bipolar cable TT2 50 cm up to 100 cm | Plastics One, USA | 305-340/2 | Bipolar cable TT2 50 cm up to 100 cm |
Buprex | Schering-Plough, S.A | 961425 | Buprenorphine (analgesic) |
Ceftriaxona Reig Jofré 1g IM | Laboratorio Reig Jofré S.A., Spain | 624239.1 | Ceftriaxone (antibiotic) |
Commutator | Plastics One, USA | SL2+2C | 4 Channel Commutator for DBS |
Concentric bipolar platinum-iridium electrodes | Plastics One, USA | MS303/8-AIU/Spc | Electrodes for DBS |
Driller | Bosh | T58704 | Driller |
FDG | Curium Pharma Spain S.A., Spain | —– | 2-[18F]fluoro-2-deoxy-D-glucose (PET radiotracer) |
Heating pad | DAGA, Spain | 23115 | Heating pad |
Ketolar | Pfizer S.L., Spain | 776211.9 | Ketamine (anesthetic drug) |
Lipolasic 2 mg/g | Bausch & Lomb S.A, Spain | 65277 | Ophthalmic lubricating gel |
MatLab R2021a | The MathWorks, Inc | Support software for SPM12 | |
MRIcro | McCausland Center for Brain Imaging, University of South Carolina, USA | v2.1.58-0 | Software for imaging preprocessing and analysis |
Multimodality Workstation (MMWKS) | BiiG, Spain | Software for imaging processing and analysis | |
Omicrom VISION VET | RGB Medical Devices, Spain | 731100 ReV B | Cardiorrespiratory monitor for small imaging |
Prevex Cotton buds | Prevex, Finland | —– | Cotton buds |
Sevorane | AbbVie Spain, S.L.U, Spain | 673186.4 | Sevoflurane (inhalatory anesthesia) |
Small screws | Max Witte GmbH | 1,2 x 2 DIN 84 A2 | Small screws |
Standard U-Frame Stereotaxic Instrument for Rat, 18° Ear Bar | Harvard Apparatus, USA | 75-1801 | Two-arms Stereotactic frame for rat |
Statistical Parametric Mapping (SPM12) | The Wellcome Center for Human Neuroimaging, UCL Queen Square Institute of Neurology, UK | SPM12 | Software for voxel-wise imaging analysis |
STG1004 | Multi Channel Systems GmbH, Germany | STG1004 | Isolated stimulator |
SuperArgus PET/CT scanner | Sedecal, Spain | S0026403 | NanoPET/CT scanner for small animal imaging |
Suture thread with needle, 1/º | Lorca Marín S.A., Spain | 55325 | Braided natural silk non-absorbable suture 1/0, with triangle needle |
Technovit 4004 (powder and liquid) | Kulzer Technique, Germany | 64708471; 64708474 | Acrylic dental cement for craniotomy tap |
Wistar rats (Rattus norvergicus) | Charles River, Spain | animal facility | Animal model used |
Xylagesic | Laboratorios Karizoo, A.A, Spain | 572599-4 | Xylazine (anesthetic drug) |
Normon S.A., Spain | 602910 | Mepivacaine in gel for topical use |