Özet

评估对流感嗜血杆菌的呼吸道免疫应答

Published: June 29, 2021
doi:

Özet

流感嗜血杆菌 诱发呼吸道炎症。本文将重点介绍如何使用流式细胞术和共聚焦显微镜来确定吞噬细胞和淋巴细胞对该细菌的免疫反应。

Abstract

流感嗜血杆菌 (Hi)是一种普遍存在于一系列呼吸系统疾病中的细菌。可以使用各种不同的测定/技术来评估对该细菌的呼吸道免疫/炎症反应。流式细胞术和共聚焦显微镜是基于荧光的技术,可以详细表征生物反应。可以使用不同形式的Hi抗原,包括细胞壁成分,杀死/灭活制剂和活细菌。Hi是一种苛刻的细菌,需要富集培养基,但通常很容易在标准实验室环境中生长。Hi刺激的组织样本可以从外周血、支气管镜检查或切除的肺(例如,在接受肺癌手术治疗的患者中)获得。可以使用流式细胞术全面评估巨噬细胞和中性粒细胞功能,并测量各种参数,包括吞噬作用、活性氧和细胞内细胞因子产生。淋巴细胞功能(例如,T细胞和NK细胞功能)可以使用流式细胞术进行特异性评估,主要用于细胞内细胞因子的产生。Hi感染是中性粒细胞(NET)和巨噬细胞(MET)产生细胞外陷阱的有效诱导剂。共聚焦显微镜可以说是评估NET和MET表达的最佳方法,也可用于评估蛋白酶活性。肺对 流感嗜血杆菌 的免疫力可以使用流式细胞术和共聚焦显微镜进行评估。

Introduction

流感嗜血杆菌 (Hi)是一种正常的共生细菌,存在于大多数健康成人的咽部。Hi可能具有多糖胶囊(A-F型,例如B型或HiB型)或缺乏胶囊并且不可分型(NTHi)1。这种细菌的粘膜定植始于儿童早期,并且存在不同定植菌株的更替2。这种细菌也能够侵入上呼吸道和下呼吸道;在这种情况下,它可以诱导免疫反应和炎症的激活34。这种炎症反应可能导致临床疾病并导致各种重要的呼吸系统疾病,包括鼻窦炎、中耳炎、支气管炎、囊性纤维化、肺炎和慢性阻塞性肺病 (COPD)。这些情况大多是由于NTHi菌株2引起的。本文将介绍使用流式细胞术和共聚焦显微镜评估对Hi的呼吸免疫反应的方法。

下面描述的方法已改编自成熟的技术,这些技术已被修改以评估对Hi的炎症反应。选择适当的抗原形式的Hi是该评估的关键部分。抗原制剂的范围从细胞壁成分到活细菌。为了建立和标准化检测,最初使用外周血样本可能非常有帮助。

流式细胞术能够在细胞水平上测量一个样品的各种参数和功能测定。与其他更通用的方法(例如酶联免疫吸附测定(ELISA)或ELISspot)相比,该技术的优点是可以评估特定的细胞反应(例如,活性氧(ROS)的产生或细胞内细胞因子的产生)。

细胞外陷阱由中性粒细胞(NET)567和其他细胞如巨噬细胞(MET)8表达。它们越来越被认为是一种关键的炎症反应,特别是在肺部感染中9.它们可以通过共聚焦荧光显微镜进行评估。该技术可以明确识别NET/MET,并将其表达与其他形式的细胞死亡区分开来6。

流式细胞术和共聚焦显微镜都是基于荧光的测定。它们的成功取决于生物样品的最佳过滤方案。这些方法确实需要一些时间来学习,并且需要适当的监督专业知识。所涉及的仪器的购买和运行成本也很高。使用它们的最佳环境包括主要大学和三级转诊医院。

本协议中使用的方法可转移用于研究涉及呼吸系统疾病的其他类似生物(例如, 卡他莫沙菌肺炎链球菌)。NTHi还与其他常见的呼吸道细菌相互作用10

Protocol

这项工作得到了莫纳什健康人类研究伦理委员会的批准。该协议遵循人类研究伦理委员会的指导方针。 1.抗原制剂 注意:三种不同的抗原制剂可用于评估对Hi的免疫反应。这些是1)亚细胞成分(通常来自细菌细胞壁);2)灭活和灭活细菌;3)活细菌。在开始任何实验之前确定每种抗原制剂的使用。 亚细胞成分从来源获取亚细胞成分,包括商?…

Representative Results

代表性结果表明如何通过流式细胞术和共聚焦显微镜评估/定量对NTHi的炎症免疫反应。解释结果的一个关键部分是对照样品和受激发样品之间的荧光比较。通常需要进行一些初步实验来优化样品的染色。可以同时检测多少种不同的颜色取决于流式细胞仪/共聚焦显微镜上可用的通道数。结果显示用于评估1)ROS产生,2)人肺组织的细胞内细胞因子染色和3) 原位 酶图测量肺蛋白水解。 <p cla…

Discussion

这里列出的方法使用基于荧光的流式细胞术和共聚焦显微镜技术,可以结合使用以获得有关炎症性肺对Hi反应的详细信息。

建立要使用的Hi的适当抗原制剂至关重要,建议在这方面获得微生物学家的具体意见。Live Hi 会引起更强的反应,而杀死 Hi 准备和 Hi 组件更标准化,更容易存储。PI只会标记死细菌22;其他染料如羧基荧光素琥珀酰亚胺酯(CFSE)可用于标记…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

作者要感谢Monash Health临床免疫学的工作人员对这项工作的帮助。

Materials

Ammonium chloride Sigma Aldrich 213330
Brefeldin Sigma Aldrich B6542
CD28 Thermofisher 16-0289-81
CD49d Thermofisher 534048
DAPI prolong gold Thermofisher P36931
DHR123 Sigma Aldrich 109244-58-8
Filcon sterile nylon mesh Becton Dickinson 340606
Gelatin substrate, Enzchek Molecular probes E12055
MACS mix tube rotater Miltenyi Biotec 130-090-753
Medimachine Becton Dickinson Catalogue number not available
Medicons 50 µm Becton Dickinson 340592
Pansorbin Sigma Aldrich 507858
Propidium iodide Sigma Aldrich P4170
Saponin Sigma Aldrich 8047152
Superfrost slides Thermofisher 11562203

Referanslar

  1. Smith-Vaughan, H. C., Sriprakash, K. S., Leach, A. J., Mathews, J. D., Kemp, D. J. Low genetic diversity of Haemophilus influenzae type b compared to nonencapsulated H. influenzae in a population in which H. influenzae is highly endemic. Infection and Immunity. 66, 3403-3409 (1998).
  2. Murphy, T. F. Haemophilus and Moxarella infections. Harrisons Principles of Internal Medicine. 152, (2018).
  3. King, P. T., Sharma, R. The lung immune response to nontypeable haemophilus influenzae (lung immunity to NTHi). Journal of Immunology Research. , 706376 (2015).
  4. Ahearn, C. P., Gallo, M. C., Murphy, T. F. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathogens and Disease. 75, 9 (2017).
  5. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303, 1532-1535 (2004).
  6. Brinkmann, V., Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin. Journal of Cell Biology. 198, 773-783 (2012).
  7. Jorch, S. K., Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nature Medicine. 23, 279-287 (2017).
  8. Boe, D. M., Curtis, B. J., Chen, M. M., Ippolito, J. A., Kovacs, E. J. Extracellular traps and macrophages: new roles for the versatile phagocyte. Journal of Leukocyte Biology. 97, 1023-1035 (2015).
  9. Cheng, O. Z., Palaniyar, N. NET balancing: a problem in inflammatory lung diseases. Frontiers in Immunology. 4, 1 (2013).
  10. Jacobs, D. M., Ochs-Balcom, H. M., Zhao, J., Murphy, T. F., Sethi, S. Lower airway bacterial colonization patterns and species-specific interactions in chronic obstructive pulmonary disease. Journal of Clinical Microbiology. 56, (2018).
  11. Barenkamp, S. J., Munson, R. S., Granoff, D. M. Subtyping isolates of Haemophilus influenzae type b by outer-membrane protein profiles. The Journal of Infectious Diseases. 143, 668-676 (1981).
  12. Barenkamp, S. J. Outer membrane proteins and lipopolysaccharides of nontypeable Haemophilus influenzae. The Journal of Infectious Diseases. 165, 181-184 (1992).
  13. Johnston, J. W. Laboratory growth and maintenance of Haemophilus influenzae. Current Protocols in Microbiology. , (2010).
  14. King, P. T., et al. Adaptive immunity to nontypeable Haemophilus influenzae. American Journal of Respiratory and Critical Care Medicine. 167, 587-592 (2003).
  15. Coleman, H. N., Daines, D. A., Jarisch, J., Smith, A. L. Chemically defined media for growth of Haemophilus influenzae strains. Journal of Clinical Microbiology. 41, 4408-4410 (2003).
  16. King, P. T., Ngui, J., Gunawardena, D., Holmes, P. W., Farmer, M. W., Holdsworth, S. R. Systemic humoral immunity to non-typeable Haemophilus influenzae. Clinical & Experimental Immunology. 153, 376-384 (2008).
  17. King, P. T., et al. Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression. PLoS One. 10, 0120371 (2015).
  18. Aaron, S. D., et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 163, 349-355 (2001).
  19. King, P. T., et al. Lung T-cell responses to nontypeable Haemophilus influenzae in patients with chronic obstructive pulmonary disease. The Journal of Allergy and Clinical Immunology. 131, 1314-1321 (2013).
  20. Tsujikawa, T., et al. Robust cell detection and segmentation for image cytometry reveal th17 cell heterogeneity. Cytometry A. 95, 389-398 (2019).
  21. Sharma, R., O’Sullivan, K. M., Holdsworth, S. R., Bardin, P. G., King, P. T. Visualizing macrophage extracellular traps using confocal microscopy. Journal of Visualized Experiments: JoVE. (128), e56459 (2017).
  22. Stiefel, P., Schmidt-Emrich, S., Maniura-Weber, K., Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiology. 15, 36 (2015).
  23. Ueckert, J. E., Nebe von-Caron, G., Bos, A. P., ter Steeg, P. F. Flow cytometric analysis of Lactobacillus plantarum to monitor lag times, cell division and injury. Letters in Applied Microbiology. 25, 295-299 (1997).
  24. Essilfie, A. T., et al. Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma. Thorax. 67, 588-599 (2012).
  25. Huvenne, W., et al. Exacerbation of cigarette smoke-induced pulmonary inflammation by Staphylococcus aureus enterotoxin B in mice. Respiratory Research. 12, 69 (2011).
  26. Radhakrishna, N., Farmer, M., Steinfort, D. P., King, P. A Comparison of Techniques for Optimal Performance of Bronchoalveolar Lavage. Journal of Bronchology & Interventional Pulmonology. 22, 300-305 (2015).
  27. Quatromoni, J. G., Singhal, S., Bhojnagarwala, P., Hancock, W. W., Albelda, S. M., Eruslanov, E. An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. Journal of Leukocyte Biology. 97, 201-209 (2015).
  28. Tighe, R. M., et al. Improving the quality and reproducibility of flow cytometry in the lung. An official American thoracic society workshop report. American Journal of Respiratory and Critical Care Medicine. 61, 150-161 (2019).
  29. Yu, Y. R., et al. A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One. 11, 0150606 (2016).
  30. Duan, M., et al. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. Journal of Immunology. 189, 946-955 (2012).

Play Video

Bu Makaleden Alıntı Yapın
Dousha, L., Sharma, R., Lim, S., Ngui, J., Buckle, A. M., King, P. T. Assessing Respiratory Immune Responses to Haemophilus Influenzae. J. Vis. Exp. (172), e62572, doi:10.3791/62572 (2021).

View Video