Un adaptateur de plaque multicolonne permet aux colonnes de chromatographie d’être interfacées avec des plaques de collecte multi-puits pour une affinité parallèle ou une purification par échange d’ions, offrant une méthode de purification de protéines économique à haut débit. Il peut être utilisé sous gravité ou sous vide donnant des quantités de milligrammes de protéines via une instrumentation abordable.
La purification des protéines est impérative pour l’étude de la structure et de la fonction des protéines et est généralement utilisée en combinaison avec des techniques biophysiques. C’est également un élément clé dans le développement de nouvelles thérapies. L’ère évolutive de la protéomique fonctionnelle alimente la demande de purification des protéines à haut débit et de techniques améliorées pour faciliter cela. On a émis l’hypothèse qu’un adaptateur de plaque multicolonne (MCPA) peut interfacer plusieurs colonnes de chromatographie de différentes résines avec des plaques multi-puits pour la purification parallèle. Cette méthode offre une méthode économique et polyvalente de purification des protéines qui peut être utilisée sous gravité ou vide, rivalisant avec la vitesse d’un système automatisé. Le MCPA peut être utilisé pour récupérer des rendements en milligrammes de protéines par une méthode abordable et efficace dans le temps pour la caractérisation et l’analyse ultérieures. Le MCPA a été utilisé pour la purification par affinité à haut débit des domaines SH3. L’échange d’ions a également été démontré via le MCPA pour purifier la chromatographie d’affinité des protéines post Ni-NTA, indiquant comment ce système peut être adapté à d’autres types de purification. En raison de sa configuration avec plusieurs colonnes, la personnalisation individuelle des paramètres peut être effectuée dans la même purification, irréalisable par les méthodes actuelles à base de plaques.
Les techniques de purification des protéines pour atteindre des quantités milligrammes de protéines purifiées sont impératives pour leur caractérisation et leur analyse, en particulier pour les méthodes biophysiques telles que la RMN. La purification des protéines est également centrale dans d’autres domaines d’étude tels que les processus de découverte de médicaments et les études d’interaction protéine-protéine; cependant, atteindre de telles quantités de protéines pures peut devenir un goulot d’étranglement pour ces techniques1,2,3. La principale méthode de purification des protéines est la chromatographie, qui comprend une variété de méthodes qui reposent sur les caractéristiques individuelles des protéines et leurs étiquettes. En chromatographie d’affinité, les protéines ont un motif protéique ou peptidique supplémentaire qui fonctionne comme une étiquette qui a une affinité pour un certain substrat sur la résine de chromatographie4. La méthode d’affinité la plus courante est la chromatographie d’affinité métallique immobilisée (IMAC) utilisant des protéines marquées par His, tandis qu’une autre méthode populaire est la chromatographie par échange d’ions qui sépare les protéines en fonction de leur charge. Pour une pureté plus élevée, une combinaison de chromatographie d’affinité et d’échange d’ions est fréquemment utilisée ensemble, nécessitant généralement un équipement de laboratoire coûteux pour un débit élevé.
L’ère évolutive de la protéomique fonctionnelle alimente la demande de techniques à haut débit pour purifier non pas des protéines singulières pour une analyse spécifique, mais un grand nombre de protéines simultanément pour une analyse complète et des études à l’échelle du génome5. La chromatographie d’affinité métallique immobilisée (IMAC) est l’une des méthodes les plus utilisées pour la purification des protéines à haut débit6,7 mais ses systèmes automatisés sont coûteux et inabordables pour les petits laboratoires8. Les solutions de rechange plus abordables à base de plaques qui sont actuellement disponibles utilisent l’utilisation d’équipement de laboratoire accessible, comme le vide. Bien que ces méthodes réussissent à améliorer la vitesse de purification, elles ne peuvent atteindre une purification à haut débit qu’à plus petite échelle, ne produisant que des protéines de l’ordre du microgramme. Ces limitations signifient que les plaques filtrantes de 96 puits préemballées (par exemple, de GE Healthcare, qui appartient maintenant à Cytiva) ne peuvent pas être utilisées avant les techniques biophysiques9. La chromatographie gravitationnelle est la méthode de purification la plus rentable; cependant, la configuration de plusieurs colonnes est peu pratique et peut être sujette à des erreurs pour plusieurs protéines.
Un adaptateur de plaque multicolonne (MCPA) a été développé et éprouvé pour exécuter avec succès et commodément des colonnes de chromatographie d’affinité parallèle à la fois pour purifier les domaines SH3 de levure his-tagged10. Le MCPA offre une méthode de purification à haut débit rentable qui ne dépend pas d’instruments coûteux. Sa conception flexible peut purifier efficacement les milligrammes de protéines par de multiples colonnes de chromatographie d’affinité sous gravité ou collecteur sous vide. En outre, le type de résine, le volume et d’autres paramètres peuvent être ajustés pour chaque colonne individuelle pour une optimisation plus rapide. Cette étude démontre que la chromatographie par échange d’ions par le MCPA peut être utilisée en conjonction avec la chromatographie d’affinité par le MCPA pour améliorer la purification du domaine Abp1 SH3. De plus, jusqu’à 24 protéines différentes peuvent être séparées en parallèle à l’aide de ces méthodes.
La méthode est robuste et simple à utiliser pour les biochimistes protéiques relativement inexpérimentés, mais il y a quelques considérations à garder à l’esprit.
Mise en garde contre le remplissage excessif des plaques de collecte
La plaque de collecte de 48 puits elle-même ne contient que 5 mL par puits alors que chaque puits de 96 n’en contient que 2 mL. Cela doit être gardé à l’esprit lors de l’ajout de tampon et de l’exéc…
The authors have nothing to disclose.
La recherche rapportée dans cette publication a été soutenue par un prix de développement institutionnel (IDeA) de l’Institut national des sciences médicales générales des National Institutes of Health sous le numéro de subvention P20GM103451 et une subvention de recherche interne de l’Université de Liverpool.
2 mL/ well collection plate | Agilent technologies | 201240-100 | |
5 mL/ well collection plate | Agilent technologies | 201238-100 | |
12 mL chromatography columns | Bio-Rad | 7311550 | |
96 well long drip plate | Agilent technologies | 200919-100 | Come with 0.25 um filters which are to be removed. |
96 well plate seal/mat | Agilent technologies | 201158-100 | Should be peirceable |
His60 Ni Superflow Resin | Takara Bio | 635660 | |
HiTrap Q HP anion exchange column | GE Healthcare (Cytiva) | 17115301 | |
Lvis plate reader | BMG LABTECH | Compatible with FLUOstar Omega plate reader | |
Male leur plugs | Cole-Parmer | EW-45503-70 | |
PlatePrep 96 well Vacuum Manifold Starter kit | Sigma-Aldrich | 575650-U | |
Reservoir collection plate | Agilent technologies | 201244-100 | |
The Repeater Plus | Eppendorf | 2226020 | With 5 mL and 50 mL syringes |
VACUSAFE vacuum | INTEGRA | 158 320 | The vacusafe vacuum has a vacuum range from 300 mBar to 600 mBar and a 4 L waste collection bottle |