نقدم بروتوكول لتحديد وكمية الفئات الرئيسية من الأيض للذوبان في الماء في الخميرة Saccharomyces cerevisiae. الطريقة الموصوفة متعددة الاستخدامات وقوية وحساسة. فإنه يسمح فصل ايزومرات الهيكلية وأشكال ستيريويسوميريك من الأيض للذوبان في الماء من بعضها البعض.
الأيض هو منهجية تستخدم لتحديد وتحديد كمي من العديد من وسيطات الوزن الجزيئي المنخفض ومنتجات التمثيل الغذائي داخل الخلية أو الأنسجة أو الأعضاء أو السوائل البيولوجية أو الكائن الحي. يركز الميتابوميك تقليديا على الأيض القابل للذوبان في الماء. المستقلب القابل للذوبان في الماء هو المنتج النهائي لشبكة خلوية معقدة تدمج مختلف العوامل الجينومية، الجينومية، النسخية، البروتيومية، والبيئية. وبالتالي، فإن التحليل الأيضي يقيم مباشرة نتيجة العمل لجميع هذه العوامل في عدد كبير من العمليات البيولوجية داخل الكائنات الحية المختلفة. واحدة من هذه الكائنات الحية هي الخميرة الناشئة Saccharomyces cerevisiae، وهو eukaryote أحادي الخلية مع الجينوم تسلسل كامل. لأن S. cerevisiae قابلة للتحليلات الجزيئية الشاملة ، يتم استخدامه كنموذج لتشريح الآليات الكامنة وراء العديد من العمليات البيولوجية داخل الخلية eukaryotic. ومن شأن اتباع طريقة تحليلية متعددة الاستخدامات للتقييم الكمي القوي والحساس والدقيق للميبولوم القابل للذوبان في الماء أن يوفر المنهجية الأساسية لتشريح هذه الآليات. هنا نقدم بروتوكولا للظروف الأمثل من النشاط الأيضي في إرواء واستخراج المستقلب للذوبان في الماء من خلايا S. cerevisiae. ويصف البروتوكول أيضا استخدام الكروماتوغرافيا السائلة إلى جانب قياس الطيف الكتلي جنبا إلى جنب (LC-MS/MS) للتحليل الكمي للميثابات المستخلصة القابلة للذوبان في الماء. طريقة LC-MS/MS من الأيض غير المستهدفة الموصوفة هنا متعددة الاستخدامات وقوية. وهو يتيح تحديد وتحديد كمي لأكثر من 370 المستقلبات القابلة للذوبان في الماء مع خصائص هيكلية ومادية وكيميائية متنوعة، بما في ذلك إيزومرات هيكلية مختلفة وأشكال ستيريويسوميريك من هذه الأيضات. وتشمل هذه الأيض جزيئات مختلفة الناقل الطاقة, النيوكليوتيدات, الأحماض الأمينية, السكريات الأحادية, وسيطة من انحلال الجليكوليسيس, ووسيطة دورة tricarboxylic. طريقة LC-MS/MS من الأيض غير المستهدفة حساسة وتسمح بتحديد وكمية بعض الأيضات القابلة للذوبان في الماء بتركيزات منخفضة يصل إلى 0.05 pmol/μL. وقد استخدمت هذه الطريقة بنجاح لتقييم الأيض للذوبان في الماء من خلايا الخميرة البرية من نوع ومتحولة المستزرعة في ظل ظروف مختلفة.
الأيضات القابلة للذوبان في الماء هي وسيطة منخفضة الوزن الجزيئي ومنتجات التمثيل الغذائي التي تساهم في العمليات الخلوية الأساسية. وتشمل هذه العمليات المحفوظة تطوريا تحويل المواد الغذائية إلى طاقة قابلة للاستخدام، وتركيب الجزيئات الكبيرة، والنمو الخلوي والإشارات، والسيطرة على دورة الخلية، وتنظيم التعبير الجيني، والاستجابة للإجهاد، وتنظيم ما بعد الترجمة من التمثيل الغذائي، والحفاظ على وظائف الميتوكوندريا، والاتجار الخلوي المركبات، autophagy، الشيخوخة الخلوية، وتنظيم موت الخلية1،2،3.
وقد تم اكتشاف العديد من هذه الأدوار الأساسية من الأيض للذوبان في الماء من قبل الدراسات في الخميرة الناشئة S. cerevisiae1,3,4,7,9,14,15,16,17,18,19,20,21,22. هذا eukaryote أحادي الخلية هو كائن نموذجي مفيد لتشريح الآليات التي من خلالها الأيض القابل للذوبان في الماء تساهم في العمليات الخلوية بسبب قابليتها للالمتقدمة البيوكيميائية والوراثية والجزيئية التحليلات البيولوجية23،24،25،26. على الرغم من أن أساليب LC-MS/MS من الأيض غير المستهدفة قد استخدمت لدراسة أدوار الأيض القابل للذوبان في الماء في الخميرة الناشئة3،18،22،27، يتطلب هذا النوع من التحليل تحسين براعة ، متانة ، حساسية ، والقدرة على التمييز بين مختلف الايزومرات الهيكلية والأشكال المجسمة لهذه الأيضات.
وتتميز السنوات الأخيرة من التقدم الكبير في تطبيق أساليب LC-MS/MS من الأيض غير المستهدفة إلى التنميط من الأيض للذوبان في الماء في الجسم الحي. ومع ذلك، لا تزال العديد من التحديات في استخدام هذه المنهجية2،28،29،30،31،32،33،34،35،36. وتشمل هذه التحديات ما يلي: أولا، تركيزات داخل الخلايا من العديد من الأيضات القابلة للذوبان في الماء هي أقل من عتبة الحساسية للطرق المستخدمة حاليا. ثانيا، كفاءة إرواء النشاط الأيضي منخفضة جدا، ومدى تسرب الخلايا المرتبطة بإرواء الأيض داخل الخلايا مرتفع جدا بالنسبة للطرق الحالية؛ وبالتالي، فإن الأساليب المستخدمة حاليا أقل تقدير تركيزات داخل الخلايا من الأيض للذوبان في الماء. ثالثا، لا يمكن للأساليب القائمة أن تميز بين الأيزومرات الهيكلية (أي الجزيئات ذات الصيغة الكيميائية نفسها ولكن الاتصال الذري المختلف) أو الجسيمات المجسمة (أي الجزيئات ذات الصيغة الكيميائية نفسها والاتصال الذري، ولكن مع الترتيب الذري المختلف في الفضاء) لمييضات محددة؛ وهذا يمنع التعليق التوضيحي الصحيح لبعض الأيضات بالطرق المستخدمة حاليا. رابعا، إن قواعد البيانات الطيفية الكتلية الموجودة على الإنترنت للتوابع الأصلية (MS1) والأيونات الثانوية (MS2) غير مكتملة؛ وهذا يؤثر على تحديد الصحيح والكمية من الأيض محددة باستخدام البيانات الخام LC-MS / MS المنتجة بمساعدة الأساليب الحالية. خامسا، لا يمكن استخدام الطرق القائمة نوع واحد من استخراج المستقلب لاسترداد جميع أو معظم فئات الأيض للذوبان في الماء. سادسا، لا يمكن استخدام الطرق الموجودة نوع واحد من العمود LC لفصل عن بعضها البعض جميع أو معظم فئات الأيض للذوبان في الماء.
هنا، ونحن الأمثل الظروف لإرواء النشاط الأيضي داخل خلايا S. cerevisiae، والحفاظ على معظم الأيض للذوبان في الماء داخل هذه الخلايا قبل الاستخراج، واستخراج معظم فئات الأيض للذوبان في الماء من خلايا الخميرة. طورنا طريقة متعددة الاستخدامات وقوية وحساسة لتحديد وتحديد كمية أكثر من 370 استقلاب قابل للذوبان في الماء مستخرج من خلايا S. cerevisiae. هذه الطريقة من الأيض غير المستهدفة تمكن من تقييم تركيزات داخل الخلايا من جزيئات الناقل الطاقة المختلفة, النيوكليوتيدات, الأحماض الأمينية, السكريات الأحادية, وسيطة من انحلال الجليكوليسيس, ووسيطة دورة tricarboxylic. تسمح طريقة LC-MS/MS المطورة بتحديد وتحديد كمي لمختلف الأيزومرات الهيكلية والأشكال المجسمة من الأيضات القابلة للذوبان في الماء ذات الخصائص الهيكلية والفيزيائية والكيميائية المتنوعة.
لاستخدام البروتوكول الموضح هنا بنجاح، اتبع التدابير الوقائية الموضحة أدناه. الكلوروفورم والميثانول استخراج مواد مختلفة من البلاستيك المختبري. لذلك، التعامل معها بحذر. تجنب استخدام البلاستيك في الخطوات التي تنطوي على الاتصال مع أي من هذه المذيبات العضوية اثنين. استخدام ماصة الزجاج borosilic…
The authors have nothing to disclose.
ونحن ممتنون للأعضاء الحاليين والسابقين في مختبر تيتورينكو على المناقشات. ونعترف بمركز التطبيقات البيولوجية لقياس الطيف الكتلي، ومركز الجينوم الهيكلي والوظيفي، ومركز الفحص المجهري والتصوير الخلوي (وكلها في جامعة كونكورديا) للخدمات المتميزة. وقد دعمت هذه الدراسة بمنح من مجلس بحوث العلوم الطبيعية والهندسة الكندي (RGPIN 2014-04482 وCRDPJ 515900 – 17). حصل ك.M على دعم زمالة أرشامبولت بجامعة كونكورديا وجائزة عميد الآداب والعلوم في جامعة كونكورديا للتميز.
Chemicals | |||
Acetonitrile | Fisher Scientific | A9554 | |
Ammonium acetate | Fisher Scientific | A11450 | |
Ammonium bicarbonate | Sigma | 9830 | |
Bactopeptone | Fisher Scientific | BP1420-2 | |
Chloroform | Fisher Scientific | C297-4 | |
Glucose | Fisher Scientific | D16-10 | |
L-histidine | Sigma | H8125 | |
L-leucine | Sigma | L8912 | |
L-lysine | Sigma | L5501 | |
Methanol | Fisher Scientific | A4564 | |
Methanol | Fisher Scientific | A4564 | |
Propidium iodide | Thermo Scientific | R37108 | |
Uracil | Sigma | U0750 | |
Yeast extract | Fisher Scientific | BP1422-2 | |
Hardware equipment | |||
500 ml centrifuge bottles | Beckman | 355664 | |
Agilent 1100 series LC system | Agilent Technologies | G1312A | |
Beckman Coulter Centrifuge | Beckman | 6254249 | |
Beckman Coulter Centrifuge Rotor | Beckman | JA-10 | |
Centra CL2 clinical centrifuge | Thermo Scientific | 004260F | |
Digital thermometer | Omega | HH509 | |
Foam Tube Holder Kit with Retainer | Thermo Scientific | 02-215-388 | |
SeQuant ZIC-pHILIC zwitterionic-phase column (5µm polymer 150 x 2.1 mm) | Sigma Milipore | 150460 | |
Thermo Orbitrap Velos MS | Fisher Scientific | ETD-10600 | |
Ultrasonic sonicator | Fisher Scientific | 15337416 | |
Vortex | Fisher Scientific | 2215365 | |
ZORBAX Bonus-RP, 80Å, 2.1 x 150 mm, 5 µm | Agilent Technologies | 883725-901 | |
Laboratory materials | |||
2-mL Glass sample vials with Teflon lined caps | Fisher Scientific | 60180A-SV9-1P | |
Glass beads (acid-washed, 425-600 μm) | Sigma-Aldrich | G8772 | |
Hemacytometer | Fisher Scientific | 267110 | |
15-mL High-speed glass centrifuge tubes with Teflon lined caps | PYREX | 05-550 | |
Software | |||
Compound Discoverer 3.1 | Fisher Scientific | V3.1 | |
Yeast strain | |||
Yeast strain BY4742 | Dharmacon | YSC1049 |