يصف هذا البروتوكول تنقية التوبولين من مصادر صغيرة / متوسطة الحجم مثل الخلايا المستزرعة أو أدمغة الماوس الواحدة ، وذلك باستخدام دورات البلمرة وإزالة البوليمر. يتم إثراء التوبولين المنقى في أنواع متساوية محددة أو لديه تعديلات محددة بعد النقل ويمكن استخدامه في فحوصات إعادة تشكيل المختبر لدراسة ديناميكيات microtubule والتفاعلات.
أحد الجوانب الهامة لدراسات الهيكل الخلوي microtubule هو التحقيق في سلوك microtubule في تجارب إعادة تشكيل المختبر. أنها تسمح بتحليل الخصائص الجوهرية لل microtubules، مثل الديناميات، وتفاعلاتها مع البروتينات المرتبطة microtubule (MAPs). “رمز توبولين” هو مفهوم الناشئة التي تشير إلى isotypes توبولين مختلفة ومختلف التعديلات ما بعد النقل (PTMs) والمنظمين للخصائص microtubule والوظائف. لاستكشاف الآليات الجزيئية للشفرة التوبولين, من المهم إجراء تجارب إعادة تشكيل في المختبر باستخدام tubulin تنقية مع isotypes محددة وPTMs.
حتى الآن، كان هذا تحديا من الناحية الفنية كما توبولين الدماغ، والذي يستخدم على نطاق واسع في التجارب المختبرية، ويؤوي العديد من PTMs ولها تكوين isotype محددة. ومن ثم، وضعنا هذا البروتوكول لتنقية التوبولين من مصادر مختلفة ومع التراكيب isotype مختلفة وPTMs التي تسيطر عليها، وذلك باستخدام النهج الكلاسيكي من البلمرة ودورات إزالة البوليمر. بالمقارنة مع الأساليب القائمة القائمة على تنقية تقارب، وهذا النهج ينتج نقية، البلمرة المختصة التوبولين، كما يتم التخلص من أنبوبولين مقاومة للبوليمرة أو إزالة البوليمر خلال خطوات تنقية المتعاقبة.
نحن نصف تنقية التوبولين من خطوط الخلية ، التي تزرع إما في التعليق أو كثقافات معتنقة ، ومن أدمغة فأرة واحدة. تصف الطريقة أولا توليد كتلة الخلية في كل من إعدادات التعليق والتمسك ، وهي خطوة التحلل ، تليها المراحل المتعاقبة لتنقية التوبولين عن طريق دورات البلمرة والتخلص من البوليمر. تنتج طريقتنا التوبولين الذي يمكن استخدامه في التجارب التي تعالج تأثير رمز التوبولين على الخصائص الجوهرية للميكروبات وتفاعلات microtubule مع البروتينات المرتبطة بها.
تلعب الخلايا الدقيقة أدوارا حاسمة في العديد من العمليات الخلوية. أنها تعطي الخلايا شكلها، وبناء المغزل ميوتيك وميتوتيك للفصل الكروموسوم، وبمثابة مسارات للنقل داخل الخلايا. لأداء هذه الوظائف المتنوعة، تنظم البيبات الدقيقة نفسها بطرق مختلفة. أحد الأسئلة المثيرة للاهتمام في هذا المجال هو فهم الآليات الجزيئية التي تسمح للخلايا الدقيقة المحفوظة هيكليا وتطوريا بالتكيف مع هذا العدد الكبير من المنظمات والوظائف. آلية واحدة محتملة هي تنويع microtubules ، والتي يتم تعريفها من خلال المفهوم المعروف باسم “رمز توبولين”1،2،3. يتضمن رمز توبولين عنصرين رئيسيين: الدمج التفاضلي للمنتجات الجينية α β-توبولين (أنواع توبولين) في الأنابيب الدقيقة وتعديلات ما بعد النقل الأنبوبي (PTMs).
منذ السبعينيات، مهدت تجارب إعادة تشكيل المختبر، إلى جانب تقنيات المجهر الخفيف المتطورة، الطريق لاكتشافات مهمة حول خصائص الميكروبات: عدم الاستقرار الديناميكي4 والمطحنة5،وآلياتها ووظائفها الأخرى6و7و8و9و10و11و12و13و14و15. تقريبا جميع التجارب في المختبر التي أجريت حتى الآن وقد استندت على tubulin تنقيتها من أنسجة المخ باستخدام دورات متكررة من البلمرة وإزالة البوليمر16،17. على الرغم من أن تنقية من أنسجة الدماغ يمنح ميزة الحصول على توبولين عالية الجودة بكميات كبيرة (عادة كميات غرام), عيب واحد مهم هو التغايرية كما tubulin تنقيتها من أنسجة الدماغ هو مزيج من isotypes توبولين مختلفة ويتم إثراء مع العديد من PTMs توبولين. هذا التغايرية يجعل من المستحيل تحديد دور PTM توبولين معينة أو isotype في السيطرة على خصائص microtubule والوظائف. وبالتالي، إنتاج التوبيولين التجميع المختصة مع PTMs توبولين الخاضعة للرقابة وتكوين isotype متجانسة أمر ضروري لمعالجة الآليات الجزيئية للرمز توبولين.
في الآونة الأخيرة ، تم تطوير نهج لتنقية التوبولين عن طريق الكروماتوغرافيا تقارب باستخدام TOG microtubule ملزمة (الجينات المفرطة في التعبير عن الورم) مجال الخميرة Stu2p18. في هذه الطريقة ، يتم تمرير التوبولين في اللخص الخام من الخلايا أو الأنسجة من خلال عمود حيث يرتبط بمجال TOG المشلولين بالمصفوفة ، والذي يسمح بتحليل بركة التوبولين بأكملها لعينة معينة ، حتى صغيرة جدا. كما تم وصف نهج طال انتظاره لتنقية التوبولين المؤتلف في السنوات الأخيرة. وهو يقوم على نظام فيروس الباكولو ، حيث يتم التعبير عن ناقل ثنائي ال سيسترونيك يحتوي على جينات α β توبولين في خلايا الحشرات19. ومع ذلك، فإن هذه الطريقة مرهقة جدا وتستغرق وقتا طويلا، وبالتالي تستخدم في الغالب لدراسة تأثير الطفرات التوبولين20 وأنابيب isotypes21،22،23 في المختبر.
في البروتوكول الحالي، ونحن نصف الطريقة التي تستخدم راسخة وتستخدم على نطاق واسع نهج البلمرة-depolymerization كمخطط لتوليد توبولين مع مستويات مختلفة من التعديل إما من خطوط الخلية أو من أنسجة الدماغ الماوس24. في هذا الإجراء، يتم تدوير التوبولين بين القابل للذوبان (أنبوبي ديمر في 4 درجة مئوية) وشكل بلمرة (microtubule في 30 درجة مئوية في وجود جوانوسين 5′-ثلاثي الفوسفات [GTP]). يتم فصل كل نموذج من خلال خطوات متتالية من الطرد المركزي: ستبقى أجهزة الدرنات في النتواة الفائقة بعد دوران بارد (4 درجة مئوية) ، في حين سيتم إعادة الكريات الدقيقة عند 30 درجة مئوية. وعلاوة على ذلك، يتم تنفيذ خطوة واحدة البلمرة في ارتفاع piperazine- N،N′-bis(2-ethanesulfonic حمض) (PIPES) التركيز، والذي يسمح لإزالة البروتينات المرتبطة microtubule من microtubules وبالتالي، من tubulin تنقية أخيرا. Tubulin تنقيتها من خلايا هيلا S3 نمت كما تعليق أو الثقافات المنضمة خالية تقريبا من أي PTM tubulin وقد استخدمت في التجارب الأخيرة في المختبر إعادة تشكيل25,26,27,28. لقد قمنا كذلك بتكييف الطريقة لتنقية التوبولين من أدمغة فأرة واحدة ، والتي يمكن استخدامها لعدد كبير من نماذج الماوس مع تغييرات في أنواع التوبولين وPTMs.
في البروتوكول، ونحن أول وصف جيل من المواد المصدر (كتلة الخلية أو أنسجة الدماغ)، تحلل لها (الشكل 1A)،تليها الخطوات المتتالية من البلمرة توبولين وإزالة البوليمر لتنقية التوبولين (الشكل 1B). ونحن كذلك وصف عملية لتقييمنقاء (الشكل 2A، B)وكمية (الشكل 3A، B) من tubulin المنقى. ويمكن تكييف هذه الطريقة لإنتاج التوبولين المخصب مع PTM مختارة عن طريق الإفراط في التعبير عن انزيم تعديل في الخلايا قبل تنقية التوبولين (الشكل 4B). بدلا من ذلك، يمكن إضافة الإنزيمات المعدلة للتوبولين إلى التوبولين أثناء عملية التطهير. وأخيرا، يمكننا تنقية tubulin تفتقر إلى isotypes محددة أو PTMs من أدمغة الفئران ناقصة في الإنزيمات تعديل tubulin المقابلة (الشكل 4B)29.
الطريقة التي نصفها هنا لها ميزتان رئيسيتان: (1) أنها تسمح بإنتاج كميات كبيرة بما فيه الكفاية من التوبولين في وقت قصير نسبيا ، و (2) تولد توبولين نقي عالي الجودة ، مع تكوين أي نوع توبولين محدد أو PTMs. في الفيديو المصاحب لهذه المخطوطة، نسلط الضوء على بعض الخطوات الحاسمة التي ينطوي عليها هذا الإجراء.
الطريقة الموصوفة هنا يوفر منصة لتوليد بسرعة عالية الجودة، والتوبيولين التجميع المختصة بكميات متوسطة كبيرة من خطوط الخلية وأدمغة الماوس واحد. وهو يقوم على بروتوكول الذهب القياسية لتنقية التوبولين من العقول البقرية المستخدمة في هذا المجال لسنوات عديدة16،17….
The authors have nothing to disclose.
تم دعم هذا العمل من قبل ANR-10-IDEX-0001-02، وLabEx Cell’n’Scale ANR-11-LBX-0038 ومعهد التقارب Q-life ANR-17-CONV-0005. ويدعم CJ من قبل معهد كوري، تمنح الوكالة الوطنية الفرنسية للبحوث ANR-12-BSV2-0007 و ANR-17-CE13-0021، ومنحة المعهد الوطني للسرطان (INCA) 2014-PL BIO-11-ICR-1، ومنحة مؤسسة من أجل لا ريشرش الطبية (FRM) DEQ20170336756. يتم دعم MMM من قبل منحة الزهايمر Fondation Vaincre FR-16055p ، ومنحة الزهايمر الفرنسية AAP SM 2019 n°2023. وقد تم دعم JAS من قبل الاتحاد الأوروبي أفق 2020 برنامج البحث والابتكار في إطار اتفاق منحة ماري Skłodowska-كوري رقم 675737، ومنحة FRM FDT201904008210. تم دعم SB من قبل منحة FRM FDT201805005465.
نشكر جميع أعضاء مختبر جانكي، ولا سيما ج. شورون، وكذلك ج. لاكيسيتش (معهد MICALIS، AgroParisTech) وأ. غوتريو (المدرسة البوليتكونيكية) على المساعدة أثناء وضع البروتوكول. نود أن نشكر منشأة الحيوانات في معهد كوري للمساعدة في تربية الفئران والرعاية.
تم الحصول على الأجسام المضادة 12G10، التي وضعها ج. فرانكل و M. نيلسون، من بنك الدراسات التنموية الهجينة وضعت تحت رعاية NICHD وصيانتها من قبل جامعة أيوا.
1 M MgCl2 | Sigma | #M1028 | |
1-L cell culture vessels | Techne F7610 | Used for spinner cultures. Never stir the empty spinner bottles. When spinner bottles are in the cell culture incubator, always keep the lateral valves of spinner bottles slightly open to facilitate the equilibration of media with incubator’s atmosphere. After use, fill the spinner bottles immediately with tap water to avoid drying of remaining cells on the bottle walls. Wash the bottles with deionised water, add app 200 ml of deionised water and autoclave. Under a sterile cell culture hood remove the water and allow the bottles to dry completely, still under the hood, for several hours. Never use detergents for cleaning the spinner bottles because any trace amounts of the detergent can be deleterious to the cells. | |
1.5- and 2-ml tubes | |||
14-ml round-bottom tubes | |||
15-cm-diameter sterile culture dishes | |||
15-ml screw-cap tubes | |||
2-mercaptoethanol | Sigma | #M3148 | 2-mercaptoethanol is toxic and should be used under the hood. |
4-(2-aminoethyl)-benzenesulfonyl fluoride | Sigma | #A8456 | |
40% Acrylamide | Bio-Rad | #161-0140 | |
5-, 10- 20-ml syringes | |||
5-ml, 10-ml, 25-ml sterile pipettes | |||
50-ml screw-cap tubes | |||
Ammonium persulfate (APS) | Sigma | #A3678 | |
Anti-alpha-tubulin antibody, 12G10 | Developed by J. Frankel and M. Nelson, obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the NICHD, and maintained by the University of Iowa | dilution: 1/500 | |
Anti-glutamylated tubulin antibody, GT335 | AdipoGen | #AG-20B-0020 | dilution: 1/20,000 |
Aprotinin | Sigma | #A1153 | |
Balance (0.1 – 10 g) | |||
Beckman 1-l polypropylene bottles | For collecting spinner cultures | ||
Beckman Avanti J-26 XP centrifuge | For collecting spinner cultures | ||
Biological stirrer | Techne MCS-104L | Installed in the cell culture incubator (for spinner cultures), 25 rpm for Hela S3 and HEK 293 cells | |
Bis N,N’-Methylene-Bis-Acrylamide | Bio-Rad | #161-0201 | |
Blender IKA Ultra-Turrax® | For lysing brain tissue, use 5-mm probe, with the machine set at power 6 or 7. Blend the brain tissue 2-3 times for 15 s on ice. | ||
Bovine serum albumin (BSA) | Sigma | #A7906 | |
Bromophenol blue | Sigma | #1.08122 | |
Carboxypeptidase A (CPA) | Sigma | #C9268 | Concentration: 1.7 U/µl |
Cell culture hood | |||
Cell culture incubator set at 37°C, 5% CO2 | |||
Dimethyl sulfoxide (DMSO) | Sigma | #D8418 | DMSO can enhance cell and skin permeability of other compounds. Avoid contact and use skin and eye protection. |
DMEM medium | Life Technologies | #41965062 | |
DTT, DL-Dithiothreitol | Sigma | #D9779 | |
EDTA | Euromedex | #EU0007-C | |
EGTA | Sigma | #E3889 | |
Ethanol absolute | Fisher Chemical | #E/0650DF/15 | |
Fetal bovine serum (FBS) | Sigma | #F7524 | |
French pressure cell press | Thermo electron corporation | #FA-078A | with a #FA-032 cell; for lysing big amounts of cells. Set at medium ratio, and the gauge pressure of 1,000 psi (corresponds to 3,000 psi inside the disruption chamber). |
Glycerol | VWR Chemicals | #24388.295 | |
Glycine | Sigma | #G8898 | |
GTP | Sigma | #G8877 | |
Heating block | Stuart | #SBH130D | |
Hela cells | ATCC® CCL-2™ | ||
Hela S3 cells | ATCC | ATCC® CCL-2.2™ | |
Hydrochloric acid (HCl ) | VWR | #20252.290 | |
Inverted microscope | With fluorescence if cell transfection is to be verified | ||
Isopropanol | VWR | #20842.298 | |
jetPEI | Polyplus | #101 | |
JLA-8.1000 rotor | For collecting spinner cultures | ||
KOH | Sigma | #P1767 | KOH is corrosive and causes burns; use eye and skin protection. |
L-Glutamine | Life Technologies | #25030123 | |
Laboratory centrifuge for 50-ml tubes | Sigma | 4-16 K | |
Leupeptin | Sigma | #L2884 | |
Liquid nitrogen | |||
Micro-pipettes p2.5, p10, p20, p100, p200 and p1000 and corresponding tips | |||
Micropestles | Eppendorf | #0030 120.973 | |
Mouse brain tissue | Animal care and use for this study were performed in accordance with the recommendations of the European Community (2010/63/UE). Experimental procedures were specifically approved by the ethics committee of the Institut Curie CEEA-IC #118 (authorization no. 04395.03 given by National Authority) in compliance with the international guidelines. | ||
Needles 18G X 1 ½” (1.2 X 38 mm | Terumo | #18G | |
Needles 20G X 1 ½” (0.9 X 38 mm | Terumo | #20G | |
Needles 21G X 4 ¾” (0.8 X 120 mm | B.Braun | #466 5643 | |
Parafilm | |||
PBS | Life Technologies | #14190169 | |
Penicillin-Streptomycin | Life Technologies | #15140130 | |
pH-meter | |||
Phenylmethanesulfonyl fluoride (PMSF) | Sigma | #P7626 | PMSF powder is hazardous. Use skin and eye protection when preparing PMSF solutions. |
PIPES | Sigma | #P6757 | |
Pipette-boy | |||
Rotors | Beckman 70.1 Ti; TLA-100.3; and TLA 55 | ||
SDS-PAGE electrophoresis equipment | Bio-Rad | #1658001FC | |
SDS, Sodium dodecyl sulphate | VWR | #442444H | For preparing Laemmeli buffer |
SDS, Sodium dodecyl sulphate | Sigma | #L5750 | For preparing 'TUB' SDS-PAGE gels |
Sonicator | Branson | #101-148-070 | Used for lysing cells grown as adherent cultures. Use 6.5 mm diameter probe, set the sonicator at “Output control” 1, “Duty cycle” 10% and time depending on the cell type used. |
Tabletop centrifuge for 1.5 ml tubes | Eppendorf | 5417R | |
TEMED, N, N, N′, N′-Tetramethylethylenediamine | Sigma | #9281 | |
Trichostatin A (TSA) | Sigma | #T8552 | |
Triton X-100 | Sigma | #T9284 | |
Trizma base (Tris) | Sigma | #T1503 | |
Trypsin | Life Technologies | #15090046 | |
Ultracentrifuge rotors | TLA-55, TLA-100.3 and 70.1 Ti rotors | Set at 4°C or 30°C based on the need of the experiment | |
Ultracentrifuge tubes | Beckman | #357448 | for using with TLA-55 rotor |
Ultracentrifuge tubes | Beckman | #349622 | for using with TLA-100.3 rotor |
Ultracentrifuge tubes | Beckman | #355631 | for using with 70.1 Ti rotor |
Ultracentrifuges | Beckman | Optima L80-XP (or equivalent) and Optima MAX-XP (or equivalent) | Set at 4°C or 30°C based on the need of the experiment |
Vortex mixer | |||
Water bath equipped with floaters or tube holders | Set at 30°C |