本プロトコルは、半日本円上皮周期の特定段階を表す成体マウス半細管の断面微小切除法、およびその中の細胞タイプ、および後にスカッシュ製剤および無傷の管状セグメントの免疫染色を記述する。
精子形成は、最終的に身体の最も明確な細胞タイプの1つである精子を生み出すユニークな分化プロセスである。生殖細胞の分化は、4〜5世代の生殖細胞を同時に宿主とする細胞質セルトリ細胞の細胞質ポケットで同時に行われ、それらの発達を調整し、同期させる。したがって、断面内の生殖細胞型の組成は一定であり、これらの細胞の関連は半日本体上皮周期の段階(I-XII)としても知られている。重要なことに、ステージは、トランスイルミネーションによって明らかにされた差動光吸収/散乱特性に基づいて無傷の半細管から同定することができ、また、ステージが管状に沿って順番に続き続くという事実も示す。本稿では、マウス半離上皮周期の特定段階を表す半細管セグメントの分離のためのトランスイルミネーション支援マイクロ解離法について説明する。半細管の光吸収パターンは、まず解剖顕微鏡で検査され、次に特定の段階を表す管状のセグメントを切断し、下流の用途に使用します。ここでは、ステージ特異的スカッシュ製剤および無傷の細管セグメントに対する免疫染色プロトコルについて説明する。この方法により、研究者は精子形成の特定の段階で起こる生物学的事象に焦点を当てることができ、精子形成および基礎分子メカニズムの発達、毒物学、および細胞学的研究のためのユニークなツールを提供する。
男性生殖細胞の二量体精子から成熟したハプロイド精子腫への分化、すなわち、精子形成は、性的成熟した個体1の精巣における半細管の上皮において行われる複雑なプロセスである。A1精子の有糸状子は、最初に5回分裂して分化をコミットした個体群を拡大し、最終的にハプロイド精子を生じさせる精子細胞としてメイオシスに入る。円形精子の分化、すなわち、精子形成は、核圧縮および壊死体およびフラゲラムのような精子特異的構造の構築を含む細胞形態の複雑な変化を伴う。マウスでは、精子形成の全過程は、完了するまでに35日を要します2,3.
任意のロケールで、半種上皮は、分化生殖細胞の最大5コホートに生殖細胞幹細胞/前駆細胞および体細胞セルトリ細胞1を宿す。分化性生殖細胞は同心円状の層を形成し、その組成は予測可能であり、開発の所定の段階でハプロイド細胞は常に特定のタイプの精子細胞および精子4,5と関連する。したがって、管状の任意の断面は、一定の組成の生殖細胞のコホートをホストする。これらの特定の細胞会合は、半日本体上皮の段階として定義される。ステージ当たりの段階は、滞っているチェックポイントのような状態を提示しないが、同期1、2、6で胚芽細胞コホートの分化が進行するにつれて継続的に発達する。マウスでは、半細管の縦軸に沿ってセグメント状に配置された12段階(I-XII)2があり、セミニファーの上皮、または精子発生性波7、8、9の波を形成する論理的な順序で互いに従う(図1)。精子形成の完了には4サイクルかかり、任意の半細管断面内の分化性生殖細胞の階層層またはコホートは、一時的に互いに離れた半円性周期である。サイクルの長さは種に依存し、マウスでは各サイクルは8.6日10を要する。
この段階は、組織学的精巣の断面5(図1および図2)上の半上皮の細胞組成および組織に基づいて同定することができる。しかし、組織学的分析は手間がかかり、時間がかかり、固定と染色を必要とし、したがって、生きた組織に適用することはできません。重要なことに、ステージングは、異なる段階のサイクルによって示される明確な光吸収/散乱パターンを利用することによって、解剖顕微鏡下で生体組織に対しても行うことができる(図2)。各段階が光を吸収し、散乱する能力は、任意の所定のステージがホストする後期のポストマイオティック精子のクロマチン縮合のレベルとこれらの細胞の梱包をバンドル7,11に対して相対的である。精子分化、すなわち、精子形成は、さらに、円形精子の8ステップ(ステップ1〜8)および8ステップの分化(ステップ9〜16)分化を含む16の発達段階に分けられる(ステップ9〜16)分化する(図1)。ステップ 9-11 伸長精液(ステージ IX-XI)は、低レベルのクロマチン縮合のみを表示し、低量の光が吸収される。クロマチン縮合はステップ11の精子(ステージXI)から始まり、ステップ15-16伸長性の精子(ステージIV-VIII)は完全に凝縮したクロマチンを含み、したがって最大の光吸収を示す(図3)。クロマチンは、精子の頭部にしっかりと詰め込まれるには凝縮する必要があります。光吸収パターンに寄与するその他の要因は、上皮内の精液を伸長させる場所(基底対円端)および伸長性精液の束縛(II-Vの段階で発音される)11(図3)。束は、細管の真ん中のスポットとして、解剖顕微鏡の下でエッジ上のストライプとして見られ、クロマチンをより凝縮すると、スポット/ストライプ11が暗くなる。
この記事では、半日本体上皮周期の特定段階を表す半細管セグメントの分離のためのトランスイルミネーション支援マイクロ解離法の使用について説明する。一旦単離されると、段階的な細管セグメントは、生化学的RNAおよびタンパク質分析12、13、14、15、フローサイトメトリー16、エクスビボチューブ培養17および免疫染色を含む様々な下流分析を受けることができる。また、生細胞形態学的解析とその後の免疫染色のために、ステージされた細管セグメントの押しつぶされた単層を調製するための詳細な下流プロトコル、ならびに管状セグメントの全実装免疫染色を提供する。図 4で説明する一言で説明したワークフロー。
トランスイルミネーション支援マイクロディション法は、ステージの同期された細胞組成のおかげで分化の特定のステップで生殖細胞を正確に同定し、単離することを可能にする。重要なことに、それはまた、生きた組織上の精子形成中のステージ依存性事象の研究を可能にする。精子形成のためのスケーラブルなインビトロモデルの欠如を考えると、この方法はまた、ステージ特異的な尿細管セグメントex vivo12、17に対する標的短期発達および毒物学的研究を可能にするユニークな利点を有する。ここでマウスの方法を説明する一方で、同じ手順は、ラット4、7、15、19、20などの半上層の半上皮の縦方向およびセグメント配置を有する任意の哺乳類種に適用することができる。
上記で述べたトランスイルミネーション支援マイクロディクショクション法は、精子形成の研究のためのステージ指向のアプローチを可能にする。精子形成は高度に同期化されたプロセスであり、分化コミットメント(段階VII-VIII)、分裂(VII-VIII)の発症、突然変異分裂(XII)、精子伸び(VIII)および精子(V8)の発症など、精子異分化中のすべての重要なステップは、段階依存的な方法で調節され、実行される。ステージ指向の分析は、精子形成の特定のステップに制限され、したがって半日本体上皮周期の定義された段階でのみ発見されるこれらの特定の事象を研究するための強力なツールを提供する。この方法を習得するには、いくつかの練習が必要であり、良質の解剖顕微鏡と適切な照明条件の使用が成功の鍵です。この方法を日常のツールキットの一部として実施することは、精子形成中の分子事象のより正確な解剖を可能にすることによって、男性の生殖機能に関する研究の影響および生物学的関連性を大幅に改善する能力を有する。
我々が研究してきたすべてのWTマウス株は、同様のトランスイルミネーションパターンを示し、半日形成上皮周期の段階で保存された細胞会合を示す。生殖細胞の精子形成分化はWTマウスと大きく異ならないという条件では、我々が研究したすべてのノックアウトマウスモデルにも同じことが当てはまります。また、半日本円上皮周期7の段階の縦方向の区分配置を示す他の種にも適用することができる。ただし、非セグメント段階(ヒトなど)を持つ種は使用できません。トランスイルミネーションパターンを定義する際に、細長い精子のクロマチン縮合の本質的な役割を考えると、このプロセスのいかなる誤った調節も必然的にこの方法の実装に影響を及ぼすことが明らかである。若年マウスおよび若年成人(5-6週間)では、トランスイルミネーションパターンはまだ完全に確立されていないため、8週以上経過したマウスのみを使用する必要があります。また、細管を圧迫して引っ張ることは、半上皮内の細胞アーキテクチャを歪めるため、必然的にトランスイルミネーションパターンに影響を与えることに留意することも重要です。
分離された半細管セグメントはまた、虚生を含む精子形成結合プロセスの ex vivo 観察および操作を可能にする培養することができる。組織の生存率を確保し、RNAおよびタンパク質の分解を防ぐために、サンプルを採取し、マウスを犠牲にしてから2時間以内に処理する必要があります。半細管の エキビボ 培養では、犠牲から培養の発症までの時間は1時間を超えてはならない。尿細管断片の完全性は、通常、適切に収穫されれば 、インビトロで 72時間まで維持することができる。
半日膜上皮周期の段階は、スカッシュ製剤16の位相対比顕微鏡を用いて検証し、さらに正確に定義することができる。顕微鏡検査は、細胞の生きた上で行われ、分析に追加の次元を提供し、精子形成28、29、30の特定段階における細胞小器官または細胞の動きを観察することを可能にする。位相対照顕微鏡は、その後の免疫染色のための正確なステージングを提供し、ステージ特異的な変化を含む精子形成中のタンパク質発現および局在性ダイナミクスの非常に詳細な分析を可能にする。
細胞はスカッシュ製剤の上皮コンテキストから放出されるが、尿細管セグメントの全実装免疫染色は、その生理学的環境における精子形成細胞の研究を可能にする。したがって、全実装製剤は、断面での免疫染色よりも、半細管アーキテクチャとその細胞間接触のより良い視覚化を提供し得る。重要なことに、免疫染色前の管状セグメントのトランスイルミネーション支援ステージングは、特定のセグメントの特定の段階に関する情報を含めることによって、アプローチをさらに強力にします。全型染色は、細管周囲筋膜細胞、骨周管マクロファージ、精子などの半細管周囲の細胞の研究に特に有用であるが、滑術細胞および心肥後性胚芽細胞に関する研究に関する新しい洞察を開く可能性がある。
The authors have nothing to disclose.
この作品は、フィンランドアカデミー[315948、314387からN.K.への]からの助成金によって支えられ、;シグリッド・ジュセリウス財団[N.K.、J.T.へ]。エミール・アールトネン財団[J.-A.M.、T.L.へ]。トゥルク分子医学博士課程[S.C.-M.、O.O.O.]。
bovine serum albumin (BSA) | Sigma | A9647 | |
cover glass 20×20 mm | Menzel Gläser | 11961988 | |
Falcon conical tube 15-ml | Sarstedt | 62.554.502 | |
fetal bovine serum (FBS) | Biowest | S1810 | |
grease pen (ImmEdge) | Vector Laboratories | H-4000 | |
microscope slide Superfrost Plus | Thermo Scientific | 22-037-246 | |
Parafolmaldehyde (PFA) | Electron Microscopy Sciences | 15714 | |
Petri dish (100-mm) | Greiner | 664160 | |
phosphate-buffered saline (PBS) | Gibco | 11503387 | |
ProLong Diamond Antifade Mountant | Thermo Fisher | P36962 | |
rhodamine-labelled Peanut agglutinin (PNA) | Vector Laboratories | RL-1072 | |
Triton X-100 | Sigma | 93443 | |
Tween-20 | Sigma | P2287 |