Традиционные модели фототромботического инсульта (ПТС) в основном индуцируют плотные агрегаты тромбоцитов с высокой резистентностью к тканевой терапии активатором плазминогена (tPA)-литическим лечением. Здесь модифицированная мышиная модель ПТС вводится путем совместного введения тромбина и фоточувствительного красителя для фотоактивации. Модель ПТС, усиленная тромбином, производит смешанные тромбоцитарно-фибриновые сгустки и обладает высокой чувствительностью к tPA-тромболизису.
Идеальная модель тромбоэмболического инсульта требует определенных свойств, в том числе относительно простых хирургических процедур с низкой смертностью, постоянного размера и локализации инфаркта, осаждения тромбоцитов и сгустков крови с примесью тромбоцитов и фибрина, аналогичных таковым у пациентов, и адекватной чувствительности к фибринолитическому лечению. Модель фототромботического инсульта на основе красителя бенгальской розы (RB) отвечает первым двум требованиям, но обладает высокой рефрактерностью к tPA-опосредованному литической терапии, предположительно из-за богатого тромбоцитами, но бедного фибрином состава сгустков. Мы полагаем, что комбинация RB-красителя (50 мг/кг) и субтромботической дозы тромбина (80 ЕД/кг) для фотоактивации, направленной на проксимальную ветвь средней мозговой артерии (МЦА), может приводить к образованию обогащенных фибрином и tPA-чувствительных тромбов. Действительно, модель комбинированного фототромбоза с тромбином и RB (T+RB) вызывала смешанные тромбоцитарно-фибриновые тромбы, как показали иммуноокрашивание и иммуноблоты, и поддерживала постоянные размеры и локализацию инфаркта плюс низкую смертность. Кроме того, внутривенное введение tPA (Alteplase, 10 мг/кг) в течение 2 ч после фотоактивации значительно уменьшало размер инфаркта при фототромбозе T+RB. Таким образом, модель фототромботического инсульта, усиленная тромбином, может быть полезной экспериментальной моделью для тестирования новых методов тромболитической терапии.
Эндоваскулярная тромбэктомия и tPA-опосредованный тромболизис являются единственными двумя одобренными Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) методами лечения острого ишемического инсульта, которым ежегоднов Соединенных Штатах страдают ~700 000 пациентов. Поскольку применение тромбэктомии ограничено окклюзией крупных сосудов (LVO), в то время как tPA-тромболизис может облегчить окклюзию мелких сосудов, оба метода лечения острого ишемического инсульта2 являются ценными. Кроме того, комбинация обоих методов лечения (например, начало tPA-тромболизиса в течение 4,5 часов после начала инсульта с последующей тромбэктомией) улучшает реперфузию и функциональные исходы3. Таким образом, оптимизация тромболизиса остается важной целью для исследований инсульта, даже в эпоху тромбэктомии.
Тромбоэмболические модели являются важным инструментом для доклинических исследований инсульта, направленных на улучшение тромболитической терапии. Это связано с тем, что модели механической окклюзии сосудов (например, внутрипросветная окклюзия MCA) не приводят к образованию тромбов, а быстрое восстановление мозгового кровотока после удаления механической окклюзии чрезмерно идеализировано 4,5. На сегодняшний день основные модели тромбоэмболии включают фототромбоз 6,7,8, местное применение хлорида железа (FeCl3)9, микроинъекцию тромбина в ветвь MCA 10,11, инъекцию ex vivo (микро)эмболии в MCA или общую сонную артерию (CCA)12,13,14 и транзиторную гипоксию-ишемию (tHI)15,16, 17,18. Эти модели инсульта различаются по гистологическому составу последующих тромбов и чувствительности к tPA-опосредованной литической терапии (табл. 1). Они также различаются по хирургическому требованию трепанации черепа (необходимой для инъекции тромбина in situ и местного применения FeCl3), постоянству размера и расположения инфаркта (например, CCA-инфузия микроэмболов дает очень разные результаты) и глобальному воздействию на сердечно-сосудистую систему (например, tHI увеличивает частоту сердечных сокращений и сердечный выброс, чтобы компенсировать вызванную гипоксией периферическую вазодилатацию).
Модель фототромботического инсульта (ПТС) на основе красителя RB имеет много привлекательных особенностей, включая простые хирургические процедуры без трепанации черепа, низкую смертность (обычно < 5%) и предсказуемый размер и расположение инфаркта (на территории, поставляющей MCA), но у нее есть два основных ограничения. 8 Первое предостережение – слабый или нулевой ответ на tPA-опосредованную тромболитическую терапию, что также является недостатком модели FeCl3 7,19,20. Второе предостережение моделей инсульта PTS и FeCl3 заключается в том, что последующие тромбы состоят из плотно упакованных агрегатов тромбоцитов с небольшим количеством фибрина, что не только приводит к их устойчивости к tPA-литической терапии, но и отклоняется от картины смешанных тромбоцитов:фибриновых тромбов у пациентов с острым ишемическим инсультом21,22. В отличие от этого, модель микроинъекций тромбина in situ в основном включает полимеризованный фибрин и неопределенное содержание тромбоцитов10.
Учитывая вышеизложенное, мы предположили, что примесь RB и субтромботической дозы тромбина для MCA-направленной фотоактивации через истонченный череп может увеличить фибриновый компонент в образующихся тромбах и повысить чувствительность к tPA-опосредованному литическому лечению. Мы подтвердили эту гипотезу,23 и в данной статье подробно описываем процедуры модифицированной (Т+РБ) модели фототромботического инсульта.
Традиционный RB-фототромботический инсульт, представленный в 1985 году, является привлекательной моделью фокальной ишемии головного мозга для простых хирургических процедур, низкой смертности и высокой воспроизводимости инфаркта головного мозга. 5 В этой модели фотодинами…
The authors have nothing to disclose.
Эта работа была поддержана грантами NIH (NS108763, NS100419, NS095064 и HD080429 для C.Y.K.; и NS106592 для Y.Y.S.).
2,3,5-triphenyltetrazolium chloride (TTC) | Sigma | T8877 | infarct |
4-0 Nylon monofilament suture | LOOK | 766B | surgical supplies |
5-0 silk suture | Harvard Apparatus | 624143 | surgical supplies |
543nm laser beam | Melles Griot | 25-LGP-193-249 | photothrombosis |
adult male mice | Charles River | C57BL/6 | 10~14 weeks old (22~30 g) |
Anesthesia bar for mouse adaptor | machine shop, UVA | surgical setup | |
Avertin (2, 2, 2-Tribromoethanol) | Sigma | T48402 | euthanasia |
Dental drill | Dentamerica | Rotex 782 | surgical setup |
Digital microscope | Dino-Lite | AM2111 | brain imaging |
Dissecting microscope | Olympus | SZ40 | surgical setup |
Fine curved forceps (serrated) | FST | 11370-31 | surgical instrument |
Fine curved forceps (smooth) | FST | 11373-12 | surgical instrument |
goat anti-rabbit Alexa Fluro 488 | Invitrogen | A11008 | Immunohistochemistry |
Halsted-Mosquito hemostats | FST | 13008-12 | surgical instrument |
Heat pump with warming pad | Gaymar | TP700 | surgical setup |
infusion pump | KD Scientific | 200 | thrombolytic treatment |
Insulin syringe with 31G needle | BD | 328291 | photothrombosis |
Ketamine | CCM, UVA | anesthesia | |
Laser protective google 532nm | Thorlabs | LG3 | photothrombosis |
Meloxicam SR | CCM, UVA | NSAID analgesia | |
micro needle holders | FST | 12060-01 | surgical instrument |
micro scissors | FST | 15000-03 | surgical instrument |
MoorFLPI-2 blood flow imager | Moor | 780-nm laser source | Laser Speckle Contrast Imaging |
Mouse adaptor | RWD | 68014 | surgical setup |
Puralube Vet ointment | Fisher | NC0138063 | eye dryness prevention |
Retractor tips | Kent Scientific | Surgi-5014-2 | surgical setup |
Rose Bengal | Sigma | 198250 | photothrombosis |
Thrombin | Sigma | T7513 | photothrombosis |
Tissue glue | Abbott Laboratories | NC9855218 | surgical supplies |
tPA | Genetech | Cathflo activase 2mg | thrombolytic treatment |
Vibratome | Stoelting | 51425 | TTC infacrt |
Xylazine | CCM, UVA | anesthesia |