Os modelos tradicionais de AVC fototrombótico (STP) induzem principalmente agregados plaquetários densos de alta resistência ao tratamento lítico com ativador do plasminogênio tecidual (tPA). Aqui um modelo de PTS murino modificado é introduzido pela co-injeção de trombina e corante fotossensível para fotoativação. O modelo de PTS com trombina produz coágulos mistos plaquetas:fibrina e é altamente sensível à trombólise tPA.
Um modelo ideal de AVC tromboembólico requer certas propriedades, incluindo procedimentos cirúrgicos relativamente simples com baixa mortalidade, tamanho e localização consistentes do infarto, precipitação de coágulos sanguíneos mistos plaquetas:fibrina semelhantes aos dos pacientes e sensibilidade adequada ao tratamento fibrinolítico. O modelo de AVC fototrombótico baseado em corante rosa bengala (RB) atende aos dois primeiros requisitos, mas é altamente refratário ao tratamento lítico mediado por tPA, presumivelmente devido à sua composição de coágulo rica em plaquetas, mas pobre em fibrina. Argumentamos que a combinação de corante RB (50 mg/kg) e uma dose subtrombótica de trombina (80 U/kg) para fotoativação visando o ramo proximal da artéria cerebral média (ACM) pode produzir coágulos enriquecidos com fibrina e sensíveis a tPA. De fato, o modelo de fototrombose combinada com trombina e RB (T+RB) desencadeou coágulos sanguíneos mistos plaquetas:fibrina, como demonstrado por imunomarcação e imunomanchas, e manteve tamanhos e locais de infarto consistentes, além de baixa mortalidade. Além disso, a injeção intravenosa de tPA (Alteplase, 10 mg/kg) dentro de 2 h após a fotoativação diminuiu significativamente o tamanho do infarto na fototrombose T+RB. Assim, o modelo de AVC fototrombótico com trombina pode ser um modelo experimental útil para testar novas terapias trombolíticas.
A trombectomia endovascular e a trombólise mediada por tPA são as duas únicas terapias aprovadas pela Food and Drug Administration (FDA) dos EUA para acidente vascular cerebral isquêmico agudo, que acomete ~700.000 pacientes anualmente nos Estados Unidos1. Como a aplicação da trombectomia é limitada à oclusão de grandes vasos (LVO), enquanto a trombólise tPA pode aliviar as oclusões de pequenos vasos, ambas são terapias valiosas do acidente vascular cerebral isquêmico agudo2. Além disso, a combinação de ambas as terapias (por exemplo, início de trombólise tPA-dentro de 4,5 horas do início do AVC, seguido de trombectomia) melhora a reperfusão e os resultados funcionais3. Assim, otimizar a trombólise continua sendo um objetivo importante para a pesquisa do AVC, mesmo na era da trombectomia.
Os modelos tromboembólicos são uma ferramenta essencial para a pesquisa pré-clínica de AVC com o objetivo de melhorar as terapias trombolíticas. Isso ocorre porque os modelos de oclusão vascular mecânica (por exemplo, oclusão da ACM por sutura intraluminal) não produzem coágulos sanguíneos, e sua rápida recuperação do fluxo sanguíneo cerebral após a remoção da oclusão mecânica é excessivamente idealizada 4,5. Até o momento, os principais modelos tromboembólicos incluem fototrombose6,7,8, aplicação tópica de cloreto férrico (FeCl3)9, microinjeção de trombina no ramo da ACM 10,11, injeção ex vivo de (micro)êmbolos na ACM ou artéria carótida comum (ACC)12,13,14 e hipóxia-isquemia transitória (tHI)15,16, 17,18. Esses modelos de AVC diferem na composição histológica dos coágulos subsequentes e na sensibilidade às terapias líticas mediadas por tPA (Tabela 1). Eles também variam na necessidade cirúrgica de craniotomia (necessária para injeção in situ de trombina e aplicação tópica de FeCl3), na consistência do tamanho e localização do infarto (por exemplo, a infusão de microêmbolos com CCA produz resultados muito variáveis) e nos efeitos globais sobre o sistema cardiovascular (por exemplo, o tHI aumenta a frequência cardíaca e o débito cardíaco para compensar a vasodilatação periférica induzida por hipóxia).
O modelo de AVC fototrombótico (PTS) baseado em corante RB tem muitas características atraentes, incluindo procedimentos cirúrgicos simples sem craniotomia, baixa mortalidade (tipicamente < 5%) e um tamanho e localização previsíveis do infarto (no território fornecedor de MCA), mas tem duas limitações principais. 8 A primeira ressalva é a resposta fraca a nula ao tratamento trombolítico mediado por tPA, o que também é uma desvantagem do modelo FeCl3 7,19,20. A segunda ressalva dos modelos de PTS e FeCl3 stroke é que os trombos subsequentes consistem em agregados plaquetários densamente embalados com uma pequena quantidade de fibrina, o que não apenas leva à sua resiliência à terapia lítica tPA, mas também se desvia do padrão de trombos mistos de plaquetas:fibrina em pacientes com AVC isquêmicoagudo 21,22. Em contraste, o modelo de microinjeção de trombina-microinjeção in situ compreende principalmente fibrina polimerizada e conteúdo incerto de plaquetas10.
Dado o raciocínio acima, levantamos a hipótese de que a mistura de RB e uma dose subtrombótica de trombina para fotoativação direcionada à MCA através do crânio afinado pode aumentar o componente de fibrina nos trombos resultantes e aumentar a sensibilidade ao tratamento lítico mediado por tPA. Confirmamos essa hipótese23 e descrevemos detalhadamente os procedimentos do modelo fototrombótico de AVC modificado (T+RB).
O tradicional acidente vascular cerebral fototrombótico RB, introduzido em 1985, é um modelo atraente de isquemia cerebral focal para procedimentos cirúrgicos simples, baixa mortalidade e alta reprodutibilidade do infarto cerebral. 5 Nesse modelo, o corante fotodinâmico RB ativa rapidamente as plaquetas à excitação luminosa, levando a agregados densos que ocluem o vaso sanguíneo 5,8,23. No entanto…
The authors have nothing to disclose.
Este trabalho foi apoiado pelos subsídios do NIH (NS108763, NS100419, NS095064 e HD080429 para C.Y. K.; e NS106592 para Y.Y.S.).
2,3,5-triphenyltetrazolium chloride (TTC) | Sigma | T8877 | infarct |
4-0 Nylon monofilament suture | LOOK | 766B | surgical supplies |
5-0 silk suture | Harvard Apparatus | 624143 | surgical supplies |
543nm laser beam | Melles Griot | 25-LGP-193-249 | photothrombosis |
adult male mice | Charles River | C57BL/6 | 10~14 weeks old (22~30 g) |
Anesthesia bar for mouse adaptor | machine shop, UVA | surgical setup | |
Avertin (2, 2, 2-Tribromoethanol) | Sigma | T48402 | euthanasia |
Dental drill | Dentamerica | Rotex 782 | surgical setup |
Digital microscope | Dino-Lite | AM2111 | brain imaging |
Dissecting microscope | Olympus | SZ40 | surgical setup |
Fine curved forceps (serrated) | FST | 11370-31 | surgical instrument |
Fine curved forceps (smooth) | FST | 11373-12 | surgical instrument |
goat anti-rabbit Alexa Fluro 488 | Invitrogen | A11008 | Immunohistochemistry |
Halsted-Mosquito hemostats | FST | 13008-12 | surgical instrument |
Heat pump with warming pad | Gaymar | TP700 | surgical setup |
infusion pump | KD Scientific | 200 | thrombolytic treatment |
Insulin syringe with 31G needle | BD | 328291 | photothrombosis |
Ketamine | CCM, UVA | anesthesia | |
Laser protective google 532nm | Thorlabs | LG3 | photothrombosis |
Meloxicam SR | CCM, UVA | NSAID analgesia | |
micro needle holders | FST | 12060-01 | surgical instrument |
micro scissors | FST | 15000-03 | surgical instrument |
MoorFLPI-2 blood flow imager | Moor | 780-nm laser source | Laser Speckle Contrast Imaging |
Mouse adaptor | RWD | 68014 | surgical setup |
Puralube Vet ointment | Fisher | NC0138063 | eye dryness prevention |
Retractor tips | Kent Scientific | Surgi-5014-2 | surgical setup |
Rose Bengal | Sigma | 198250 | photothrombosis |
Thrombin | Sigma | T7513 | photothrombosis |
Tissue glue | Abbott Laboratories | NC9855218 | surgical supplies |
tPA | Genetech | Cathflo activase 2mg | thrombolytic treatment |
Vibratome | Stoelting | 51425 | TTC infacrt |
Xylazine | CCM, UVA | anesthesia |