Özet

Using Tree-Rings to Reconstruct Fire History Information from Forested Areas

Published: October 22, 2020
doi:

Özet

This work explains the most appropriate techniques and methods for conducting a fire history study from beginning site selection to final analysis of fire-climate relationship.

Abstract

Annual tree-ring patterns are a source of ecological and environmental information including the history of fires in forested areas. Tree-ring based fire histories include three fundamental phases: field collection, laboratory methods (preparation and dating), and data analysis. Here we provide step-by-step instructions and issues to consider, including the process for selecting the study area, sampling sites, plus how and which fire-scarred trees to sample. In addition, we describe fire-scar sample preparation and dating which are done in the laboratory. Finally, we describe basic analysis and relevant results, including examples from studies that have reconstructed fire history patterns. These studies allow us to understand the historical fire frequency, changes in those frequencies related to anthropogenic factors, and analyzes of how climate influences fire occurrence over time. The description of these methods and techniques should provide a greater understanding of fire history studies that will benefit researchers, educators, technicians, and students interested in this field. These detailed methods will allow new researchers to this field, a resource to start their own work and achieve greater success. This resource will provide a greater integration of tree-ring aspects within other studies and lead to a better understanding of natural processes with forested ecosystems.

Introduction

Forest fires, ignited by natural or anthropogenic causes, are considered one of the most common ecological disturbance factors that influence terrestrial ecosystems1. For example, fire and more specifically fire regimes, influence plant species composition and structure2. Fire is also a fundamental process linking biogeochemical cycles and climatic variability3,4. In some areas, fire contributes to degradation and deforestation, while in other areas, fire is fundamental for regeneration and sustaining open forest structures5,6. As a result, understanding the ecological role of forest fires is essential to management and conservation programs.

Fire regimes are defined as the pattern of fire events over time characterized by the frequency and its variability in type, extent, intensity, seasonality and severity7,8. Forest fire regimes can be studied through direct observation, reports, satellite images, oral history, age structure and species composition, and through the use of dendrochronological methods9. Dendrochronology uses tree-rings, dated with annual precision, to study climatic and ecological events10. One of the branches of Dendrochronology is fire history reconstruction or Dendropyrochronology which uses tree-rings to determine the spatial and temporal patterns of past and contemporary fires thereby reconstructing the fire regime within a study area11,12. Dendrochronological methods, provide precision and resolution advantages compared to other dating methods, because they allow dating of ecological events, with annual to intra-annual (i.e., seasonal) precision, at long temporal scales, sometimes up to several thousand years13,14.

Fire history reconstructions are also critical in understanding how general climate circulation patterns at regional scales have influenced fire spread. These analyses of the climate-fire relationship are novel because they provide insight into how climate influences fire frequencies over long periods of time, which is not possible with the modern instrumental climate records4. In order to facilitate reconstructing fire histories, we provide a field and laboratory protocol that describes dendrochronological methods and techniques that will allow researchers, teachers, technicians, and students interested in this field of study to initiate their own projects and studies.

In this protocol, we provide the tools to develop a greater understanding and answers to different ecological questions in the field of forest ecology such as: 1) What is the fire regime? 2) Have fire regimes changed in recent decades or have fire frequencies continued without significant change? or 3) Have there been changes attributed to anthropogenic influence? 4) How are fire frequency patterns related to climate variability?

Protocol

1. Sampling strategy Determining the study area Generally, forest areas are extensive (hundreds or thousands of hectares), therefore, select a study area that will meet the objectives, which in this case, is to determine the fire history and its variability over time (Figure 1). Limit the study area only to the areas that contain fire-scarred trees which will be the sampling unit. Reconnaissance of the study area can often be facilitated using drones and video te…

Representative Results

When a surface fire burns in a forest, the tree trunks of some trees are often damaged, causing injury that subsequently heals (Figure 7A). These scars form when the fire is intense enough or has a long enough residence time to penetrate the bark and kill part of the cambium. Historically, such fires occurred often enough to prevent the accumulation of fuels; therefore, most of these fires would not be able to reach the tree canopies. As a result, most mature trees survived and continued gro…

Discussion

In forested ecosystems, fire is a key ecological process; therefore, reconstructing historical fire regimes is important toward understanding the frequency, seasonality, and variability of fires overtime. Changes to the historical fire regime can potentially lead to unintended consequences in regards to forest structure and health; therefore, such information is critical in forest management. This methodological approach focuses on the importance of selecting the study area and sites, collecting the best fire-scarre…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

The research project was carried out thanks to the financing through the project: Study of the climate-fires relation in north-central Mexico, financed by the SEP-CONACYT fund.

Materials

Belt Sander Dewalt Dwp352vs-b3 3×21 PuLG For sanding samples
Chain Saw Boots Forestry Suppliers There is no any specific characteristic https://www.forestry-suppliers.com/Search.php?stext=Chain%20Saw%20Boots
Chain Saw Chaps Forestry Suppliers PGI 5-Ply Para-Aramid https://www.forestry-suppliers.com/Search.php?stext=Chain%20Saw%20Chaps
Chainsaw Stihl or Husqvarna for example MS 660 Essential equipment for taking samples (Example: 18-24 inch bar)
Clinometer Forestry Suppliers Suunto PM5/360PC with Percent and Degree Scales https://www.forestry-suppliers.com/Search.php?stext=Clinometer
COFECHA Software https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software
Compass Forestry Suppliers Suunto MC2 Navigator Mirror Sighting https://www.forestry-suppliers.com/Search.php?stext=compass
Dendroecological fieldwork program Program where dating skills can be acquired or honed http://dendrolab.indstate.edu/NADEF.htm
Diameter tape Forestry Suppliers Model 283D/10M Fabric or Steel. https://www.forestry-suppliers.com/Search.php?stext=Diameter%20tape
Digital camera CANON EOS 90D DSLR To take pictures of the site and the samples collected (https://www.canon.com.mx/productos/fotografia/camaras-eos-reflex)
Digital camera for microscope OLYMPUS DP27 https://www.olympus-ims.com/es/microscope/dp27/
Electrical tape or Plastic wrap to protect samples uline.com https://www.uline.com/Product/Detail/S-6140/Mini-Stretch-Wrap-Rolls/
FHAES Software https://www.frames.gov/partner-sites/fhaes/fhaes-home/
Field format There is no any specific characteristic To collect information from each of the samples
Field notebook To take notes on study site information
Gloves For field protection
Hearing protection Forestry Suppliers There is no any specific characteristic https://www.forestry-suppliers.com/Search.php?stext=Hearing%20protection
Large backpacks There is no any specific characteristic Strong backpack for transporting samples in the field
Safety Glasses Forestry Suppliers There is no any specific characteristic https://www.forestry-suppliers.com/Search.php?stext=Safety%20Glasses
Sandpaper From 40 to 1200 grit
Software CDendro/ CooRecorder Tree-ring-measurements and dating can also be done using scanned images of the cross-sections https://www.cybis.se/forfun/dendro/
Software Measure J2X Version 4.2 ttp://www.voortech.dreamhosters.com/projectj2x/tringSubscribeV2.html
Stereomicroscope OLYMPUS SZX10 https://www.olympus-ims.com/en/microscope/szx10/
Topographic map, land cover map Obtained from a public institution or generated in a first phase of research
Velmex equipment Velmex, Inc. 0.001 mm precision www.velmex.com
Wildland Fire Helmet Forestry Suppliers There is no any specific characteristic https://www.forestry-suppliers.com/Search.php?stext=Wildland%20Fire%20Helmet

Referanslar

  1. Pyne, S. J. World fire. The culture of fire on Earth. , 384 (1996).
  2. Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., Rundel, P. W. . Fire in Mediterranean ecosystems: ecology, evolution and management. , (2012).
  3. Bowman, D., Balch, J. K., Artaxo, P. Fire in the Earth system. Science. 324, 481-484 (2009).
  4. Falk, D. A., et al. Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks. Frontiers in Ecology and the Environment. 9 (8), 446-454 (2011).
  5. Rodríguez, T. D. A., Fulé, P. Z. Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire. 12, 23-37 (2003).
  6. Iniguez, J. M., et al. Tree and opening spatial patterns vary by tree density in two old-growth remnant ponderosa pine forests in Northern Arizona, USA. Forest Ecology and Management. 450, 117502 (2019).
  7. Agee, J. K. Alternatives for implementing fire policy. Proceedings, Symposium on fire in wilderness and park management. , 107-112 (1993).
  8. Wright, C. S. . Fire history of the Teanaway River drainage, Washington. , (1996).
  9. Arno, S. F., Sneck, K. M. A method for determining fire history in coniferous forests of the mountain west. US Department of Agriculture. , 28 (1977).
  10. Fritts, H. C. Dendroclimatology and dendroecology. Quaternary Research. 1 (4), 419-449 (1971).
  11. Grissino-Mayer, H. D. FHX2-software for analyzing temporal and spatial patterns in fire regimes from tree rings. Tree-Ring Research. 57, 115-124 (2001).
  12. Speer, J. H. . Fundamentals of tree-ring research. , 509 (2010).
  13. Bull, W. B. . Tectonic geomorphology of mountains: a new approach to paleoseismology. , 316 (2008).
  14. Black, B. A., Boehlert, G. W., Yoklavich, M. M. Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Canadian Journal of Fisheries and Aquatic Sciences. 62 (10), 2277-2284 (2005).
  15. Van Horne, M. L., Fulé, P. Z. Comparing methods of reconstructing fire history using fire scars in a southwestern United States ponderosa pine forest. Canadian Journal of Forest Research. 36 (4), 855-867 (2006).
  16. Falk, D. A., Swetnam, T. W. Scaling rules and probability models for surface fire regimes in ponderosa pine forests. USDA Forest Service Proceedings RMRSP-29. , 301-318 (2003).
  17. Cerano-Paredes, J., et al. Interpretación del historial de incendios en bosques mixtos de coníferas. CENID-RASPA INIFAP. 15, (2009).
  18. Baisan, C. H., Swetnam, T. W. Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, USA. Canadian Journal of Forest Research. 20, 1559-1569 (1990).
  19. Cochrane, J., Daniels, L. D. Striking a balance: Safe sampling of partial stem crosssections in British Columbia. BC Journal of Ecosystems and Management. 9 (1), 38-46 (2008).
  20. Stokes, M. A., Smiley, T. L. . An introduction to tree-ring dating. , 73 (1996).
  21. Robinson, W. J., Evans, R. A microcomputer-based tree-ring measuring system. Tree-Ring Bulletin. 40, 59-64 (1980).
  22. Holmes, R. L. Computer-assisted quality control in tree ring dating and measurement. Tree-Ring Bulletin. 43, 69-75 (1983).
  23. Dieterich, J. H., Swetnam, T. W. Dendrochronology of a fire-scarred ponderosa pine. Forest Science. 30, 238-247 (1984).
  24. Heyerdahl, E. K., Alvarado, E., Veblen, T. T., Baker, W. L., Montenegro, G., Swetnam, T. W. Influence of climate and land use on historical surface fires in pine-oak forests, Sierra Madre Occidental, Mexico. Fire and climatic change in temperate ecosystems of the Western Americas. , 196-217 (2003).
  25. Swetnam, T. W., Baisan, C. H., Veblen, T. T., Baker, W. L., Montenegro, G., Swetnam, T. W. Tree-ring reconstructions of fire and climate history in the Sierra Nevada and southwestern United States. Fire and climatic change in temperate ecosystems of the western Americas. , 158-195 (2003).
  26. Yocom, L. L., Fulé, P. Z. Human and climate influences on frequent fire in a high-elevation tropical forest. Journal of Applied Ecology. 49 (6), 1356-1364 (2012).
  27. Sutherland, E. K., Brewer, P., Velasquez, M. E., Falk, D. A. . FHAES: The Fire History Analysis and Exploration System. , (2015).
  28. Malevich, S. B., Guiterman, C. H., Margolis, E. Q. burnr: Fire history analysis and graphics in R. Dendrochronologia. 49, 9-15 (2018).
  29. Grissino-Mayer, H. D., Baisan, C. H., Swetnam, T. W. Fire history and age structure analyses in the mixed conifer and spruce-fir forests of Mount Graham. Final report. Mount Graham Red Squirrel Study Committee. Phoenix, AZ, USA. U.S. Fish and Wildlife Service. , 73 (1994).
  30. Swetnam, T. W., Baisan, C. H. Fire histories of montane forests in the Madrean Borderlands. United States Department of Agriculture Forest Service. , 15-36 (1996).
  31. Sutherland, E. K., Brewer, P. W., Falk, D. A., Velasquez, M. E. . Fire History Analysis and Exploration System (FHAES) user manual. , (2015).
  32. Cerano-Paredes, J., et al. Climatic influence on fire regime (1700) to 2008) in the Nazas watershed, Durango, Mexico. Fire Ecology. 15 (1), 9 (2019).
  33. Cerano-Paredes, J., et al. Precipitación reconstruida para la parte alta de la cuenca del río Nazas, Durango. Revista Mexicana de Ciencias Forestales. 3 (10), 7-23 (2012).
  34. Cook, E. R. NIÑO 3 index reconstruction. International Tree-Ring Data Bank. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series Number 2000-052. NOAA/NGDC Paleoclimatology Program. , (2000).
  35. Brown, P. M. Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests. Ekoloji. 87 (10), 2500-2510 (2006).
  36. Fule, P. Z., Covington, W. W. Fire regimes and forest structure in the Sierra Madre Occidental, Durango, Mexico. Acta Botanica Mexicana. 41, 43-79 (1997).
  37. Fulé, P. Z., Covington, W. W. Fire regime changes in La Michilía Biosphere Reserve, Durango, Mexico. Conservation Biology. 13 (3), 640-652 (1999).
  38. Fulé, P. Z., Villanueva-Díaz, J., Ramos, G. M. Fire regime in a conservation reserve, Chihuahua, Mexico. Canadian Journal of Forest Research. 35, 320-330 (2005).
  39. Cerano-Paredes, J., Villanueva-Díaz, J., Fulé, P. Z. Reconstrucción de incendios y su relación con el clima para la reserva Cerró el Mohinora, Chihuahua. Revista Mexicana de Ciencias Forestales. 1 (1), 63-74 (2010).
  40. Fulé, P. Z., Ramos, G. M., Cortes, M. C., Miller, A. M. Fire regime in a Mexican forest under indigenous resource management. Ecological Applications. 21, 764-775 (2011).
  41. Cerano-Paredes, J., et al. Historia de incendios en un bosque de pino de la sierra de Manantlán, Jalisco, México. Bosque. 36 (1), 39-50 (2015).
  42. Cerano-Paredes, J., et al. Régimen histórico de incendios y su relación con el clima en un bosque de Pinus hartwegii al norte del estado de Puebla, Mexico. Bosque. 37 (2), 389-399 (2016).
  43. Brose, P. H., Guyette, R. P., Marschall, J. M., Stambaugh, M. C. Fire history reflects human history in the Pine Creek Gorge of north-central Pennsylvania. Natural Areas Journal. 35 (2), 214-223 (2015).
  44. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science. 313, 940-943 (2006).
  45. Singleton, M., Thode, A., Sanchez-Meador, A., Iniguez, P. Increasing trends in high-severity fire in the southwestern USA from 1984-2015. Forest Ecology Management. 433, 709-719 (2019).
  46. Brown, P. M., Wu, R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ekoloji. 86 (11), 3030-3038 (2005).
  47. Yocom, L. L., et al. El Niño Southern Oscillation effect on a fire regime in northeastern Mexico has changed over time. Ekoloji. 91 (6), 1660-1671 (2010).
  48. Iniguez, J. M., Swetnam, T. W., Baisan, C. H. Fire history and moisture influences on historical forest age structure in the sky islands of southern Arizona, USA. Journal of Biogeography. 43 (1), 85-95 (2016).
  49. Pollet, J., Omi, P. N. Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. International Journal of Wildland Fire. 11 (1), 1-10 (2002).
  50. Skinner, C. N., Burk, J. H., Barbour, M. G., Franco, V. E., Stephens, S. L. Influences of climate on fire regimes in montane forests of north-western México. Journal of Biogeography. 35, 1436-1451 (2008).
  51. Swetnam, T. W., Betancourt, J. L. Fire-southern oscillation relations in the southwestern United States. Science. 249 (4972), 1017-1020 (1990).
This article has been published
Video Coming Soon
Keep me updated:

.

Bu Makaleden Alıntı Yapın
Cerano-Paredes, J., Iniguez, J. M., Villanueva-Díaz, J., Cervantes-Martínez, R., Cambrón-Sandoval, V. H., Estrada-Arellano, J. R., Esquivel-Arriaga, G., Franco-Ramos, O., Vázquez-Selem, L., Cardoza-Martínez, G. F. Using Tree-Rings to Reconstruct Fire History Information from Forested Areas. J. Vis. Exp. (164), e61698, doi:10.3791/61698 (2020).

View Video