提示は、マイクロベシクルおよびエキソソームの効果的な濃縮および分離のための紙ベースのデバイスを製造するためのプロトコルです。
マイクロベシクルおよびエキソソームは、細胞外環境に放出され、全身に循環する小さな膜小胞である。DNA、mRNA、miRNA、タンパク質、脂質などの様々な親の細胞由来生体分子が含まれているため、その濃縮と単離は、臨床応用の潜在的なバイオマーカーとしての活用に不可欠なステップです。しかしながら、従来の分離法(例えば、超遠心分離)は、微小胞およびエキソソームに重大な損失および損傷を引き起こす。これらの方法では、試薬の超遠心、荷重、および無駄の複数の繰り返しステップが必要です。本稿では、マイクロベシクルとエキソソームの効果的な濃縮と分離を簡単に行えるように設計された折り紙ベースのデバイス(Exo-PAD)を製造するための詳細な方法について説明します。収束したサンプル領域を持つアコーディオンのような多折層からなるExo-PADのユニークなデザインは、イオン濃度偏光技術と統合され、それによって特定の層上の微小胞およびエキソソームの5倍の濃縮を可能にする。さらに、濃縮されたマイクロベシクルとエキソソームは、単にExo-PADを展開することによって分離されます。
マイクロベシクルとエキソソームはそれぞれ0.2-1 μmと30-200 nmの小膜小胞です。それらは、いくつかの異なる,細胞タイプ1、2、3、4、52,3,によって細胞外環境に分泌される。145それらはDNA、mRNA、miRNA、タンパク質、および脂質のサブセットの形態の親の細胞情報を含み、血清、血漿、尿、脳脊髄液、羊水、唾液66、7、8、97,8,9のような様々な体液を介して全身を循環する。このように、生物学的流体からの微小胞およびエキソソームを効率的に単離する技術は、疾患の診断、予後、およびリアルタイムモニタリングの分野において、ならびに新しい治療薬の開発において広範な機会を提供することができる。
しかし、超遠心分離に基づくミクロベシクルおよびエキソソームの従来の分離法は非常に時間がかかり、サンプルの著しい損失および汚染を引き起こす。これは、超遠心,,,55、6、10、11、126を繰り返した様々な試薬の、いくつかの面倒なピペットとローディングステップと廃棄を伴うからです。101112また、超遠心分離(〜100,000 x g)によって引き起こされる高剪断応力は、微小胞およびエキソソームの物理的なリシスを引き起こし、回復率が低い(5−23%)6、13、14を生じる。6,13,14そのため、損傷や損失を低減するために、マイクロベシクルおよびエキソソームの非常に効率的で目立たない分離技術を開発し、より高い回収率を達成する必要があります。
折り紙ベースのデバイス (Exo-PAD) は、マイクロベシクルとエキソソームの分離を簡単に、より穏やかで、高効率に開発しました。Exo-PADの設計は、直径が徐々に減少する連続的に接続されたサンプル領域を有する多重折紙である。このユニークな設計と統合された、電位分子を事前濃縮するナノ電気運動現象であるイオン濃度偏光(ICP)技術。Exo-PADを使用すると、特定の層の微小胞とエキソソームの5倍の濃縮と、単にデバイスを展開するだけで分離しました。この記事では、Exo-PAD について詳細に説明し、デバイスの全体的な製造と操作からその使用の分析まで、その方法を説明し、代表的な結果6を示します。
Exo-PADはマイクロベシクルおよびエキソソームの濃縮および分離のために正常に使用されましたが、いくつかの重要な点を慎重に検討する必要があります:1)デバイス調製中のオーブンインキュベーション時間と温度、2)処理時間、3)様々な層数とサンプル面積径の電圧の適用、および4)臨床サンプルへの適用性。
プロトコルで与えられたインキュベーション時間と温度は、?…
The authors have nothing to disclose.
この研究は、韓国国立研究財団、グラントNRF-2018R1D1A1A09084044によって支援されました。J.H.リーは、2019年に光明大学からの研究助成金によって支援されました。キム・ヒエリンは、韓国産業振興機構(KIAT)が運営する韓国産業エネルギー省の「産業専門家コンピテンシー開発プログラム」の支援を受けました(No.P0002397、ウェアラブルスマートデバイスの産業コンバージェンスのためのHRDプログラム)。
Ag/AgCl electrodes | A-M Systems, Inc. | 531500 | 0.15" diameter |
Albumin from Bovine Serum (BSA), Alexa Fluor 594 conjugate | Thermo Fisher Scientific | A13101 | BSA conjugated with Alexa Fluor 594 (Ex/Em: 590/617 nm) |
Carbonate-Bicarbonate Buffer | Sigma-Aldrich | C3041-50CAP | Carbonate buffer |
CorelDraw software (Coral Co., Canada) | Corel Corporation | Printer software to define wax printing region | |
ColorQube 8870 | Xerox Corporation | Wax printer | |
Chromatography paper grade 1 | Whatman | 3001-861 | Cellulose paper, dimension: 20 * 20 cm |
Fluorescent-labeled exosome standards | HansaBioMed Life Sciences, Ltd. | HBM-F-PEP-100 | Exosome labeled with FITC (Ex/Em: 490/520 nm) |
Keithley 2410 current/voltage source-meter | Keithley Instruments, Inc. | Current–voltage source measurement system | |
Nafion perfluorinated resin solution | Sigma-Aldrich | 31175-20-9 | Permselective membrane, 20 wt.% in the mixture of lower aliphatic alcohols and water; contains 34% water |
NanoSight LM10 | NanoSight Technology | Nanoparticle tracking analysis (NTA) machine | |
Phosphate-buffered saline (PBS, pH7.4) | Thermo Fisher Scientific | 10010001 |