El objetivo general del protocolo es preparar más de un millón de gotas de femtoliter ordenadas, uniformes, estables y biocompatibles sobre un sustrato plano de 1 cm2 que se puede utilizar para la síntesis de proteínas libres de células.
Los avances en la resolución espacial y la sensibilidad de detección de la instrumentación científica permiten aplicar pequeños reactores para la investigación biológica y química. Para satisfacer la demanda de microrreactores de alto rendimiento, desarrollamos un dispositivo de matriz de gotas femtoliter (FemDA) y ejemplificamos su aplicación en reacciones de síntesis de proteínas sin células (CFPS) masivamente paralelas. Más de un millón de gotas uniformes se generaron fácilmente dentro de un área del tamaño de un dedo utilizando un protocolo de sellado de aceite de dos pasos. Cada gota estaba anclada en una microcámara femtoliter compuesta de un fondo hidrófilo y una pared lateral hidrófoba. La estructura híbrida hidrófila en hidrofóbica y los aceites y tensioactivos de sellado dedicados son cruciales para retener establemente la solución acuosa femtoliter en el espacio femtoliter sin pérdida de evaporación. La configuración de femtoliter y la estructura simple del dispositivo FemDA permitían un consumo mínimo de reactivos. La dimensión uniforme de los reactores de gotas hizo que las mediciones cuantitativas y de tiempo a gran escala fueran convincentes y confiables. La tecnología FemDA correlacionó el rendimiento proteico de la reacción CFPS con el número de moléculas de ADN en cada gota. Hemos simplificado los procedimientos sobre la microfabricación del dispositivo, la formación de las gotas femtoliter y la adquisición y análisis de los datos de imagen microscópica. El protocolo detallado con el bajo costo de funcionamiento optimizado hace que la tecnología FemDA sea accesible para todos los que tienen instalaciones estándar de salas limpias y un microscopio de fluorescencia convencional en su propio lugar.
Los investigadores utilizan reactores para llevar a cabo reacciones bio/químicas. Hay esfuerzos significativos que se han hecho para reducir el tamaño del reactor y aumentar el rendimiento experimental con el fin de reducir el consumo de reactivos al tiempo que se mejora la eficiencia del trabajo. Ambos aspectos tienen como objetivo liberar a los investigadores de una carga de trabajo pesada, disminuyendo el costo y acelerando la investigación y el desarrollo. Tenemos una hoja de ruta histórica clara sobre el desarrollo de las tecnologías de reactores desde el punto de vista de los volúmenes de reacción y el rendimiento: vasos individuales / matraz / tubos de prueba, tubos de mililitro, tubos microlitro, tiras de microlitro de 8 tubos, placa de microlitro 96/384/1536-well, y reactores microfluídicos nanolitros/picolitr/femtoliter1,2,3,4,5,6,7. Análogos a la reducción del tamaño de las características de los transistores en chips de circuito integrado en la industria de semiconductores en las últimas décadas, los microrreactores bioquímicos están pasando por la reducción de volumen y la integración del sistema. Estas herramientas a pequeña escala han tenido un profundo impacto en la biología sintética basada en células o en la sin células, la biomanufactura y el prototipado y cribado de alto rendimiento8,,9,,10,,11,,12. Este artículo describe nuestro reciente esfuerzo en el desarrollo de una tecnología única de arreglos de gotas y demuestra su aplicación en CFPS13,una tecnología fundamental para la biología sintética y las comunidades de cribado molecular14. En particular, proporcionamos intencionalmente un protocolo optimizado y de bajo costo para hacer que el dispositivo FemDA sea accesible para todos. El protocolo de bajo costo y fácil de manejar para el dispositivo miniaturizado contribuiría a los propósitos educativos de las universidades y ayudaría a difundir la tecnología.
FemDA prepara gotas de femtoliter a una densidad ultra alta de 106 por 1 cm2 en un sustrato de vidrio plano. Recubrimos un polímero hidrófobo, CYTOP15,sobre el sustrato de vidrio y grabado selectivamente (eliminado) CYTOP en posiciones predefinidas para generar una matriz de microcámaras en el sustrato. Por lo tanto, la microcámara resultante se compone de una pared lateral hidrófoba (CYTOP) y un fondo hidrófilo (vidrio). Cuando el agua y el aceite fluyen secuencialmente sobre la superficie estancada, el agua puede ser atrapada y sellada en las microcámaras. La estructura hidrófila-en-hidrofóbica es vital para repeler el agua fuera de las microcámaras, aislar microrreactores individuales y retener una pequeña solución acuosa dentro del espacio femtoliter. La propiedad única se aplicó con éxito para la preparación de gotas de agua en aceite y microcomplementos de bicapas de lípidos16,17. En comparación con el prototipo de dispositivo16,primero optimizamos el proceso de microfabricación para realizar una eliminación completa del polímero CYTOP, así como una exposición completa del fondo de vidrio. CYTOP es un fluoropolímero especial con una tensión superficial extremadamente baja (19 mN/m) inferior a la de los materiales de microrreactor convencionales como vidrio, plásticos y silicona. Su buen rendimiento óptico, eléctrico y químico ya se ha utilizado en el tratamiento superficial de dispositivos microfluídicos18,,19,20,21,22,23,24. En el sistema FemDA, para lograr una buena humectación del aceite en la superficie CYTOP, la tensión superficial del aceite debe ser inferior a la de la superficie sólida25. De lo contrario, el aceite líquido en contacto con la superficie sólida tiende a ser esférico en lugar de extenderse por la superficie. Además, encontramos que algunos aceites de perfluorocarbono populares (por ejemplo, 3M FC-40)16 y aceites hidrofluoroéter (por ejemplo, la serie 3M Novec) pueden disolver CYTOP como resultado de la morfología amorfa de CYTOP, que es fatal para la medición cuantitativa y sería cuestionable en términos de contaminación cruzada entre gotas. Afortunadamente, identificamos un aceite biocompatible y respetuoso con el medio ambiente que exhibe una tensión superficial inferior (< 19 mN/m)13. También encontramos un nuevo tensioactivo que puede disolverse en el aceite seleccionado y funcionar en una concentración baja (0,1%, al menos 10 veces menor que los populares reportados anteriormente26,27)13. El surfactante puede estabilizar la interfaz de agua/aceite resultante. Debido a la alta tasa de evaporación del aceite, después del lavado con el aceite, aplicamos otro aceite biocompatible y respetuoso con el medio ambiente para reemplazar el primero para sellar las microcámaras. Llamamos al primer aceite (ASAHIKLIN AE-3000 con 0,1 wt % SURFLON S-386) el “aceite de lavado” y el segundo aceite (Fomblin Y25) el “aceite de sellado”, respectivamente.
La estrategia de sellado de aceite de dos pasos puede realizar una formación robusta de la matriz de gotas femtoliter en cuestión de minutos y sin instrumentación sofisticada. Debido al problema de evaporación, se ha considerado difícil generar microrreactores más pequeños que los volúmenes de picolitr28. FemDA abordó este problema optimizando sistemáticamente los materiales y procesos utilizados para la preparación de microrreactores/gotas. Varias características destacables de las gotas resultantes incluyen la alta uniformidad (o monodispersidad), estabilidad y biocompatibilidad a escala femtoliter. El coeficiente de variación (CV) del volumen de las gotas es de sólo 3% (sin corrección de viñetas para las imágenes microscópicas), el CV más pequeño entre las plataformas de gotas en el mundo, lo que asegura una medición altamente paralela y cuantitativa. La gota femtoliter es estable durante al menos 24 horas sin contaminación cruzada entre gotas a temperatura ambiente, lo que es valioso para una medición fiable del tiempo. En cuanto a la biocompatibilidad, logramos sintetizar varias proteínas a partir de una plantilla de ADN de una sola copia en la gota femtoliter, que anteriormente se había considerado difícil o ineficiente29,,30. Sería digno de esclarecer por qué algunas proteínas capaces de ser sintetizadas en el FemDA no se pueden sintetizar en otros sistemas de gotas. FemDA no fue simplemente un avance técnico, sino que también realizó una medición cuantitativa sin precedentes que puede correlacionar el rendimiento proteico (como refleja la intensidad de fluorescencia de la gota) con el número de moléculas de ADN de plantilla en cada gota. Como resultado, el histograma de la intensidad de fluorescencia de las gotas de CFPS basado en FemDA mostró una distribución discreta que puede ser bien ajustada por una suma de distribuciones gaussianas de intervalos iguales pico a pico. Además, la probabilidad de aparición de gotas que contienen diferentes números de moléculas de ADN era un ajuste perfecto a una distribución de Poisson31. Por lo tanto, el rendimiento proteico diferente en cada gota se puede normalizar en función de la distribución discreta. Esta característica crítica nos permite separar la información de actividad enzimática de la intensidad aparente, que aún no ha estado disponible con otras plataformas de microrreactores. Los sistemas de clasificación de células/gotas microfluídicas existentes son expertos en clasificación totalmente automática y buenos para concentrar muestras, pero a veces sólo pueden generar un histograma relativamente amplio o de cola larga en el aspecto analítico32,,33. Nuestro sistema FemDA altamente cuantitativo y biocompatible establece un nuevo punto de referencia y un alto estándar analítico en el campo del desarrollo de microrreactores.
Los aceites y tensioactivos que podrían ser utilizados para la preparación de gotas son todavía muylimitados 34. La combinación de ASAHIKLIN AE-3000 y SURFLON S-386 establecida en FemDA es un nuevo miembro del creciente arsenal de la interfaz fisioquímica entre la fase acuosa y la fase de aceite13. La nueva interfaz de FemDA es físicamente estable, químicamente inerte y biológicamente compatible con la compleja herramienta de transcripción, traducción y modificación post-traduccional para muchos tipos de proteínas13. Sería bastante atractivo encontrar una proteína que no se puede sintetizar en la configuración de gotas en su lugar. Además, el ahorro de costes de los reactivos es más evidente en el sistema de gotas femtoliter que en los sistemas de reactores nanolitros y picolitros35,36. En particular, a menudo habría un gran volumen muerto, que es causado principalmente por tubos o suministros externos, en sistemas de generación de gotas microfluídicas, pero no en nuestro FemDA. El formato de matriz también se ve favorecido por la caracterización microscópica repetida y detallada (similar al llamado análisis de alto contenido) para cada reactor37,en lugar de una sola instantánea para un objeto de movimiento rápido. La escala femtoliter permitió la integración de más de un millón de reactores en un área del tamaño de un dedo, mientras que el mismo número de reactores nanolitros (si existe) requiere sobre un área de metros cuadrados, lo que sin duda no sería práctico fabricar o utilizar dicho sistema.
La medición altamente cuantitativa basada en las gotas altamente uniformes, estables y biocompatibles en FemDA permitió la distribución discreta, la característica única de nuestro estudio diferenciándose de otros. Optimizamos y detallamos sistemáticamente los procesos de microfabricación y formación de gotas en este documento. Hay varios pasos críticos en el protocolo establecido.
En primer lugar, el recubrimiento uniforme del polímero CYTOP altamente viscoso en el sustrato rectang…
The authors have nothing to disclose.
Este trabajo fue apoyado por el número de subvención JP18K14260 de JSPS KAKENHI y el presupuesto de la Agencia Japonesa de Ciencia y Tecnología Marina-Tierra. Agradecemos a Shigeru Deguchi (JAMSTEC) y Tetsuro Ikuta (JAMSTEC) por proporcionar las instalaciones de caracterización. Agradecemos a Ken Takai (JAMSTEC) por el soporte de software comercial. La microfabricación se llevó a cabo en Takeda Sentanchi Supercleanroom, la Universidad de Tokio, con el apoyo del “Programa de Plataforma de Nanotecnología” del Ministerio de Educación, Cultura, Deportes, Ciencia y Tecnología (MEXT), Japón, Número de Subvención JPMXP09F19UT0087.
(3-aminopropyl)triethoxysilane | Sigma-Aldrich | 440140 | |
1 mL syringe | Terumo | SS-01T | |
2-propanol | Kanto Chemical | EL grade | EL: for electronic use. |
3D laser scanning confocal microscope | Lasertec | OPTELICS HYBRID | Other similar microscopes (e.g., Keyence VK-X1000, Olympus LEXT OLS5000) are also applicable. |
50 mL syringe | Terumo | SS-50LZ | |
6,8-difluoro-4-methylumbelliferyl phosphate | Thermo Fisher Scientific | D6567 | Prepare a 5 mM stock solution in dimethyl sulfoxide |
Acetone | Kanto Chemical | EL grade | EL: for electronic use. Purity 99.8%. |
Air blower | Hozan | Z-263 | |
Aluminum block | BIO-BIK | AB-24M-02 | |
Aluminum microtube stand | BIO-BIK | AB-136C | |
ASAHIKLIN AE-3000 | AGC | (Test sample) | Free test sample may be available upon inquiry to AGC. |
BEMCOT PS-2 wiper | Ozu | 028208 | |
Biopsy punch with plunger | Kai | BPP-10F | |
Cover glass | Matsunami Glass | No. 1 (24 mm × 32 mm, 0.13~0.17 mm thickness) | Size-customized. |
Cover glass staining rack | Nakayama | 803-131-11 | |
CRECIA TechnoWipe clean wiper | Nippon Paper Crecia | C100-M | |
Cutting mat | GE Healthcare | WB100020 | |
CYTOP | AGC | CTL-816AP | |
Deaeration mixer | Thinky | AR-100 | |
Desktop cutter | Roland | STIKA SV-8 | |
Developer | AZ Electronic Materials | AZ 300 MIF | AZ Electronic Materials was now acquired by Merck. Other alkaline developers may be also applicable but should require optimization of development conditions (time, temperature, etc.) |
Double-coated adhesive Kapton film tape | Teraoka Seisakusho | 7602 #25 | |
Ethanol | Kanto Chemical | EL grade | EL: for electronic use. Purity 99.5%. |
Fiji | Version: ImageJ 1.51n | ||
Flat-cable cutter | Tokyo-IDEAL | MT-0100 | |
Fomblin oil | Solvay | Y25, or Y25/6 | Free test sample may be available upon inquiry to Solvay. Fomblin Y25/6 is an alternative if Y25 is not readily available. |
Hot plate | AS ONE | TH-900 | |
Injection needle | Terumo | NN-2270C | 22G × 70 mm |
Inverted fluorescence microscope | Nikon | Eclipse Ti-E | Epifluorescence specification, CCD or sCMOS camera, motorized stage, autofocus system, and high NA objective lens are required. |
KaleidaGraph | Synergy | Version: 4.5 | |
Mask aligner | SUSS | MA-6 | Other mask aligners are also applicable as long as the vacuum contact mode is avaliable. |
MICROMAN pipette | GILSON | E M250E | Capillary piston tip: CP250 |
Microsoft Excel | Microsoft | Version: 16.16.15 | |
Mini vacuum chamber | AS ONE | MVP-100MV | |
Nuclease-free water | NIPPON GENE | 316-90101 | |
Parafilm | Amcor | PM-996 | |
PCR tube | NIPPON Genetics | FG-021D/SP | |
Petri dish | AS ONE | GD90-15 | Diameter 90 mm, height 15 mm. |
Photoresist | AZ Electronic Materials | AZ P4903 | AZ Electronic Materials was now acquired by Merck. AZ P4620 is an alternative. |
Plate reader | BioTek | POWERSCAN HT | |
Polyethelene gloves | AS ONE | 6-896-02 | Trade name: Saniment. |
PURExpress in vitro protein synthesis kit | New England Biolabs | E6800S or E6800L | For cell-free protein synthesis reaction. |
Reactive-ion etching system | Samco | RIE-10NR | Other RIE systems are also applicable but should require optimization of RIE conditions (gas flow rate, chamber pressure, RF power, etching time, etc.) |
RNase inhibitor | New England Biolabs | M0314S | |
Scotch tape | 3M | 810-1-18D | |
Sodium hydroxide solution | FUJIFILM Wako Pure Chemical | 194-09575 | 8 M concentration; danger. |
Spin coater | Oshigane | SC-308 | |
SURFLON S-386 surfactant | AGC | (Test sample) | Free test sample may be available upon inquiry to AGC. |
SYLGARD 184 silicone elastomer | Dow | Sylgard184 | Chemical composition: polydimethylsiloxane. The default mixing ratio is base : curing agent = 10 : 1 (m/m). |
Tweezers | Ideal-tek | 2WF.SA.1 2A |
|
Ultrasonic cleaner | AS ONE | ASU-2M | |
Vacuum chuck | Oshigane | (Customized) | Material: delrin; rectangular sample stage with multiple holes (48 holes, each with 1 mm diameter); the size is customzied to fit the size of the cover glass (24 mm × 32 mm). |