We describe here a method for growth of Neisseria gonorrhoeae in metal-restricted liquid medium to facilitate the expression of genes for metal uptake. We also outline downstream experiments to characterize the phenotype of gonococci grown in these conditions. These methods may be adapted to be suitable for characterization of metal-responsive genes in other bacteria.
Trace metals such as iron and zinc are vital nutrients known to play key roles in prokaryotic processes including gene regulation, catalysis, and protein structure. Metal sequestration by hosts often leads to metal limitation for the bacterium. This limitation induces bacterial gene expression whose protein products allow bacteria to overcome their metal-limited environment. Characterization of such genes is challenging. Bacteria must be grown in meticulously prepared media that allows sufficient access to nutritional metals to permit bacterial growth while maintaining a metal profile conducive to achieving expression of the aforementioned genes. As such, a delicate balance must be established for the concentrations of these metals. Growing a nutritionally fastidious organism such as Neisseria gonorrhoeae, which has evolved to survive only in the human host, adds an additional level of complexity. Here, we describe the preparation of a defined metal-limited medium sufficient to allow gonococcal growth and the desired gene expression. This method allows the investigator to chelate iron and zinc from undesired sources while supplementing the media with defined sources of iron or zinc, whose preparation is also described. Finally, we outline three experiments that utilize this media to help characterize the protein products of metal-regulated gonococcal genes.
Neisseria gonorrhoeae causes the common sexually-transmitted infection gonorrhea. During infection, pathogenic Neisseria express a repertoire of metal-responsive genes that allow the bacteria to overcome metal restriction efforts by the human host1,2,3. Trace metals like iron and zinc play key roles in many cellular processes, such as binding to enzymes in catalytic sites, participation in redox reactions, and as structural factors in various proteins4,5. In metal-limited conditions, metal-responsive loci are derepressed and their resultant proteins can aid the acquisition of these nutrients. Characterization of these genes and proteins presents a unique technical challenge for the investigator. Metal ions must be withheld from bacteria in order to induce transcription of these genes from their native loci, but effective chelation of these ions from metal-laden media can be difficult to optimize. The different metal profiles of source water and inherent lot-to-lot variation6 of powdered ingredients means that the amount of chelator required to remove a specific metal from a rich medium will vary between different locations, ingredient vendors, and even over time within a single laboratory as chemical inventory is replaced.
To circumvent this challenge, we describe the preparation of a defined medium that is treated with Chelex-100 resin during preparation to remove trace metals from the solution. This medium is sufficiently nutrient dense to allow for the growth of gonococcus, which is difficult to culture outside of the human host, and allows the investigator to introduce a specific metal profile by addition of their own defined sources and concentrations of metals. The method of controlled add-back of desired metals to depleted medium increases experimental consistency and allows for robust, replicable experiments regardless of factors such as water source and chemical lot numbers. Moreover, this media can be deployed as either a liquid or solid with only minor modifications, making it quite versatile.
In order to demonstrate the utility of the this medium, we outline a protocol for its use for gonococcal growth and describe three successful experiments to characterize metal-responsive Neisseria genes. First, we prepare gonococcal whole-cell lysates from metal-depleted or supplemented cultures and demonstrate variable levels of protein production from metal-responsive loci. We then outline a zinc-restricted growth assay in which gonococcal growth is controlled by supplementation of specific, useable zinc sources. Finally, we show binding assays that demonstrate whole gonococcal cells expressing metal-responsive surface receptors binding to their respective metal-containing ligands. Successful surface presentation of these receptors requires growth in metal-depleted medium.
The present protocol was optimized specifically for Neisseria gonorrhoeae, but numerous other bacterial pathogens employ metal acquisition strategies during infection7, so this protocol may be adapted for the study of metal homeostasis in other bacteria. Optimizing this media and these experimental protocols for use in other bacteria will likely require slight modification of metal chelator concentrations and/or treatment time with Chelex-100, as other bacteria may have slightly different metal requirements than gonococcus. Iron and zinc are the primary metals of concern for the described investigations, but other metals (e.g., manganese) have been demonstrated as critical for bacteria, including Neisseria8,9,10,11,12. Furthermore, similar methods have been described for metal characterizations in eukaryotic cell culture work, which may also be considered.13
1. Preparation of Chelex-treated Defined Medium (CDM) Stock Solutions
2. Preparation of 4x Sterile Concentrate and 1x CDM
NOTE: This procedure is to be performed in either acid treated sterile glassware or plastic to prevent leaching of metals into the solutions.
3. Preparation of CDM Plates
NOTE: The recipe below makes 1 L media for plates, but it is best to prepare these in smaller volumes. Everything scales down proportionally.
4. Metal Limited Growth of Neisseria gonorrhoeae
NOTE: For most applications, it is not necessary to metal stress the bacteria prior to inoculation of CDM. The initial doubling step in CDM and the subsequent dilution is sufficient to deplete the gonococci of their internal iron and zinc stores. As such, the first two steps of the following procedure are conducted using agar plates made from GC medium base that have been supplemented with Kellogg's supplement I14 and 12.5 μM Fe(NO3)3. If early metal stress is desired, we recommend preparing GC medium base plates without Fe(NO3)3 and with 5 μM TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) for zinc chelation or 10 μM deferoxamine for iron chelation. All incubation is conducted at 37 °C with 5% CO2.
5. Western Analysis of Metal Responsive Gene Products
6. Metal-limited Growth Assays
NOTE: These assays describe premade growth premixes. The preparation of these mixes is described in section 8.
7. Detection of Ligand Binding by Outer Membrane Metal Transporters
8. Metal Loading of Transferrin, S100A7, and Calprotectin, and Preparation of 10x Premixes
NOTE: As with CDM preparation, use acid washed glass or plastic for solution preparation.
A specific defined medium in the absence of trace metals for the growth of Neisseria gonorrhoeae was developed and implemented for the characterization of metal-responsive genes and their gene products. In the optimized protocol, the metal profile of media is controlled by adding metals back at the discretion of the investigator, rather than by titrated chelation of a metal target, allowing for increased control and consistency from lab to lab and experiment to experiment. This media can be employed in both liquid and solid state, making it versatile across many experimental setups.
Differential protein production in variable metal concentrations can be seen in the included representative Western blots (Figure 1). The image shows the zinc-responsive outer-membrane transporters TdfJ and TdfH, which were upregulated in response to zinc chelation by TPEN. TdfJ was essentially undetectable when zinc was added back to the media, and TdfH was scarce. Moreover, the tdfJ promoter is known to be induced, rather than repressed, by iron. This is also visible in the blot. These blots utilized the iron-responsive lipoprotein TbpB2 as a loading control. In conditions of iron add-back, TbpB production was reduced.
Metal-restricted growth assays demonstrate the utilization of specific, defined zinc sources by the gonococcus (Figure 2). Figure 2A shows N. gonorrhoeae growing in the presence of Zn-loaded calprotectin (CP), which requires the action of the zinc-responsive TdfH17,18. When no useable zinc source was available, either through no zinc add-back or by the absence of TdfH, growth was restricted. Figure 2B shows similar results in the presence of S100A7, which can serve as a sole zinc source when the outer membrane transporter TdfJ is produced19. In the presence of TPEN alone or when TdfJ was absent, growth was hampered, but addition of Zn-S100A7 recovered growth in a TdfJ-dependent manner. Finally, Figure 2C shows an experimental error. In this example, the dilution step of the gonococcal cultures was not sufficient to deplete the bacteria of internal zinc pools relative to the total culture volume in the microplate. As such, growth in the negative control exceeded the desired OD.
Specific binding of whole gonococcal cells to their respective ligands is demonstrated by dot blots from cultures prepared in metal-limiting and metal replete conditions (Figure 3). Figure 3A,B shows that gonococci grown in CDM were able to bind CP and S100A7 when producing TdfH and TdfJ, respectively, as a result of zinc scarcity. Figure 3C compares transferrin binding, which is accomplished by the cognate proteins made from the iron-sensing genes tbpA and tbpB20, when gonococci are grown in CDM alone vs. GC medium broth treated with the iron chelator deferoxamine. This figure shows increased binding of transferrin by cultures grown in CDM, which is indicative of higher levels of protein expression due to the more iron-depleted nature of CDM compared to chelated GC broth.
Figure 1: Representative Western blot showing differential production of metal responsive proteins. (A) Neisseria gonorrhoeae wild type strain FA19 was grown in CDM supplemented with ZnSO4, Fe(NO3)3, or TPEN in the indicated concentrations. After treatment, cultures were grown for 4 h before whole-cell lysates of standardized density were produced and subjected to SDS-PAGE and Western blotting. Differential production levels for TdfJ, which is both repressed by zinc and induced by iron, can be clearly seen in response to zinc addition/depletion and iron addition. (B) Relative signal intensities for the Western blot were quantitated via densitometry. This figure is adapted from Maurakis et al19. Please click here to view a larger version of this figure.
Figure 2: Zinc-restricted growth of gonococci. Wild type strain FA19, or isogenic mutants of this strain that do not produce tdfJ or tdfH, were grown in (A) untreated CDM until the exponential phase was reached, (B) then back diluted to OD600 = 0.02 and (C) OD600 = 0.1. The samples in A were treated with premix containing calprotectin (top) or no added zinc (bottom) and grown for 8 h. The samples in B and C were supplemented with premix containing free zinc, no zinc (5 μM TPEN), or S100A7, and grown for 6 h. Growth in these conditions was only recovered upon supplementation of media with a useable zinc source, such as CP, S100A7, or free zinc in A and B, while C was not sufficiently diluted to deplete internal cellular zinc pools. Figure 2A is adapted from Jean et al.17 Figure 2B is adapted from Maurakis et al19. Please click here to view a larger version of this figure.
Figure 3. Representative binding assays show host ligands binding to metal-stressed gonococci. (A) Wild type strain FA1090, or mutants of this strain that do not produce tdfJ, tdfH, or both, were grown in CDM without supplemental metals and were dotted onto nitrocellulose in standardized densities. Cells were probed with calprotectin, which is recognized by the zinc-responsive TdfH, and binding was assessed by detection with an anti-calprotectin antibody (top). Relative calprotectin binding was quantitated via densitometry, shown here on a log scale (bottom). (B) Binding experiments were performed as described in A, but instead using the FA19 wild type strain and tdfJ mutant and complemented strains in that background. Cells were probed with HRP-labeled S100A7, which is recognized by the zinc-responsive TdfJ. (C) Wild type strain FA19 was grown side-by-side in CDM or GC medium broth with 25 μM deferoxamine added to chelate free iron, dotted to nitrocellulose in standardized amounts, and probed with transferrin, which binds the iron-sensitive TbpA. These side-by-side tests show that CDM, unlike GC medium broth, required no additional chelation to achieve an iron-limited environment. Figure 3A is adapted from Jean et al. and the bottom from Maurakis et al19. Please click here to view a larger version of this figure.
Supplemental Figure 1. Please click here to view a larger version of this figure.
Supplemental Figure 2. Please click here to view a larger version of this figure.
Supplemental Figure 3. Please click here to view a larger version of this figure.
Growth media serves a variety of roles in microbiological research. Specialized media are used for selection, enrichment, and various other applications for many unique types of study. One such application is the induction of metal-responsive genes, which is typically accomplished by addition of a specific chelator that targets a particular metal ion. This method is limited, as the amount of chelation necessary for various trace metals is likely to be variable due to different water sources containing unique metal profiles, and two lots of the same media ingredient containing different metal concentrations6. To avoid this inherent shortcoming, we have described the preparation and use of a defined medium that is treated with Chelex-100 resin to remove all trace metals in bulk, allowing controlled addition of specified metals back into the medium as needed.
In the current protocol, the first important point of discussion is the source water. The protocol describes a Chelex treatment that is sufficient to remove metals from laboratory Type 2 (1.0 megaOhms-cm according to ISO 3696 specifications) water. Different water sources will likely require shorter or longer Chelex treatments. We have found that water of higher purity than Type 2, such as molecular biology grade water, will not support bacterial growth in this application. The choice of vessel for media preparation is just as important as the water source. We highly recommend clean plastic containers, as glassware may leach metal ions into the solution. If plasticware is not available, glassware must be acid washed to minimize contamination risk. The same acid washing is required for culture flasks when using CDM.
Growth of Neisseria gonorrhoeae in an in vitro setting can be quite challenging, as this organism has evolved to thrive specifically in human hosts21. While CDM is suitable to support growth for the duration of experiments, care must be taken during the inoculation and dilution steps to ensure that gonococci are not in atmospheric conditions longer than necessary. Due to the capnophilic nature of gonococci22 and its predilection for temperatures found within human hosts, we do not recommend keeping cultures in atmospheric conditions for longer than ~15 min. If the initial mass doubling event described in step 4.5 of the method takes longer than 2 h, it is likely that gonococcal cultures have not been handled properly and the experiment should be aborted.
While the focus of this method is on methods for growth and characterization of Neisseria gonorrhoeae specifically, usage of this specific CDM is likely also suitable for study of other Neisseria species. Moreover, it can be easily applied to the characterization of other metal-sensing systems in other bacteria. For example, a similar metal-free media has been used to characterize metal uptake in Staphylococcus aureus23 and Escherichia coli24. Utilization of the described recipe for other bacteria will likely involve small modifications or additions, depending on the specific nutritional needs of the bacteria in question. For example, supplement VIII is included in the recipe to aid with the gonococcus' need for supplemental CO2. As described above, growth is performed at 37 °C with a 5% CO2 atmosphere, but we have found that addition of supplemental bicarbonate in the media aids the initial stages of gonococcal growth in defined medium. For organisms without such a requirement, this ingredient may be omitted. Unfortunately, further examples of these modifications have to be empirically determined.
Despite the need to adapt the method somewhat for use with other bacteria, the basic framework should be appropriate for broad use. Characterization of metal-responsive genes and metal transporters is an ongoing endeavor in microbial study, with bacteria including Neisseria meningitidis18,25,26,27,28, S. aureus9, Haemophilus influenzae29, Salmonella enterica30, and E. coli31 all receiving attention in this niche. Our own future utilization of this technique will aim to further the understanding of other gonococcal metal uptake systems beyond those already mentioned, which allow the gonococcus to acquire iron from host proteins such as lactoferrin32,33, hemoglobin34,35, and also from bacterial xenosiderophores36, and to expand our studies into the effects of other metals such as manganese, which has been implicated in oxidative stress defense by Neisseria12,37.
The authors have nothing to disclose.
This work was supported by NIH grants R01 AI125421, R01 AI127793, and U19 AI144182. The writing author would like to thank all lab members who contributed to proofreading and review of this method.
125 mL sidearm flasks | Bellco | 2578-S0030 | Must be custom ordered |
2-Mercaptoethanol | VWR | M131 | Open in fume hood |
3MM Paper | GE Health | 3030-6461 | Called "filter paper" in text |
Agarose | Biolone | BIO-41025 | Powder |
Ammonium chloride | Sigma-Aldrich | A9434 | Powder |
Biotin | Sigma-Aldrich | B4501 | Powder |
Blotting grade blocker | Bio-Rad | 170-6404 | Nonfat dry milk |
Bovine serum albumin | Roche | 3116964001 | Powder |
Bovine transferrin | Sigma-Aldrich | T1428 | Powder |
Calcium chloride dihydrate | Sigma-Aldrich | C5080 | Powder |
Calcium pantothenate | Sigma-Aldrich | C8731 | Powder |
Calprotectin | N/A | N/A | We are supplied with this by a collaborator |
Chelex-100 Resin | Bio-Rad | 142-2832 | Wash with deionized water prior to use |
Cotton-tipped sterile swab | Puritan | 25-806 | Cotton is better than polyester for this application |
Deferoxamine | Sigma-Aldrich | D9533 | Powder |
D-glucose | Sigma-Aldrich | G8270 | Powder |
Dialysis cassette | Thermo | 66380 | Presoak in buffer prior to use |
Dot blot apparatus | Schleicher & Schwell | 10484138 | Lock down lid as tightly as possible before sample loading |
Ethanol | Koptec | V1016 | Flammable liquid, store in flammables cabinet |
Ferric chloride | Sigma-Aldrich | F7134 | Irritant, do not inhale |
Ferric nitrate nonahydrate | Sigma-Aldrich | F1143 | Irritant, do not inhale |
GC medium base | Difco | 228950 | Powder, already contains agar |
Glycine | Sigma-Aldrich | G8898 | Powder |
HEPES | Fisher | L-15694 | Powder |
Human transferrin | Sigma-Aldrich | T2030 | Powder |
Hypoxanthine | Sigma-Aldrich | H9377 | Powder |
Klett colorimeter | Manostat | 37012-0000 | Uses color transmission to assess culture density |
L-alanine | Sigma-Aldrich | A7627 | Powder |
L-arginine | Sigma-Aldrich | A5006 | Powder |
L-asparagine monohydrate | Sigma-Aldrich | A8381 | Powder |
L-aspartate | Sigma-Aldrich | A9256 | Powder |
L-cysteine hydrochloride | Sigma-Aldrich | C1276 | Powder |
L-cystine | Sigma-Aldrich | C8755 | Powder |
L-glutamate | Sigma-Aldrich | G1251 | Powder |
L-glutamine | Sigma-Aldrich | G3126 | Powder |
L-histidine monohydrochloride | Sigma-Aldrich | H8125 | Powder |
L-isoleucine | Sigma-Aldrich | I2752 | Powder |
L-leucine | Sigma-Aldrich | L8000 | Powder |
L-lysine | Sigma-Aldrich | L5501 | Powder |
L-methionine | Sigma-Aldrich | M9625 | Powder |
L-phenylalanine | Sigma-Aldrich | P2126 | Powder |
L-proline | Sigma-Aldrich | P0380 | Powder |
L-serine | Sigma-Aldrich | S4500 | Powder |
L-threonine | Sigma-Aldrich | T8625 | Powder |
L-tryptophan | Sigma-Aldrich | T0254 | Powder |
L-tyrosine | Sigma-Aldrich | T3754 | Powder |
L-valine | Sigma-Aldrich | V0500 | Powder |
Magnesium sulfate | Sigma-Aldrich | M7506 | Powder |
Methanol | VWR | BDH1135-4LP | Flammable liquid, store in flammables cabinet |
Nitrocellulose | GE Health | 10600002 | Keep in protective sheath until use |
Potassium phosphate dibasic | Sigma-Aldrich | 60356 | Powder |
Potassium phosphate monobasic | Sigma-Aldrich | P9791 | Powder |
Potassium sulfate | Sigma-Aldrich | P0772 | Powder |
Potato starch | Sigma-Aldrich | S4251 | Powder |
Reduced glutathione | Sigma-Aldrich | G4251 | Handle carefully. Can oxidize easily. |
S100A7 | N/A | N/A | We are supplied with this by a collaborator |
Sodium bicarbonate | Sigma-Aldrich | S5761 | Powder |
Sodium chloride | VWR | 470302 | Powder |
Sodium citrate | Fisher | S279 | Powder |
Sodium hydroxide | Acros Organics | 383040010 | Highly hygroscopic |
Thiamine hydrochloride | Sigma-Aldrich | T4625 | Powder |
Thiamine pyrophosphate | Sigma-Aldrich | C8754 | Also called cocarboxylase |
TPEN | Sigma-Aldrich | P4413 | Powder |
Tris | VWR | 497 | Powder |
Uracil | Sigma-Aldrich | U0750 | Powder |
Zinc sulfte heptahydrate | Sigma-Aldrich | 204986 | Irritant, do not inhale |