ここで提示されるプラスミドDNA送達およびアジェンジモグリア細胞標識のエレクトロポレーション方法は、成人ゼブラフィッシュテレンセファロンにおける。このプロトコルは、個々のエペンディモグリア細胞を視覚化し、トレースするための迅速かつ効率的な方法であり、遺伝子操作の広い範囲にエレクトロポレーションを適用するための新しい可能性を開きます。
エレクトロポレーションは、細胞膜内に一時的な細孔を作り、透過性を高めるために電界を細胞に適用するトランスフェクション法であり、それによって異なる分子を細胞に導入することができます。本論文では、エレクトロポレーションを用いて、成体ゼブラフィッシュテレンセファロンの心室ゾーンに並ぶエペンディモグリア細胞にプラスミドを導入する。これらの細胞の一部は幹細胞特性を示し、ゼブラフィッシュ脳に新しいニューロンを生成します。したがって、神経新生および再生における彼らの役割を決定するためには、彼らの行動を研究することが不可欠です。エレクトロポレーションを介したプラスミドの導入は、単一のエペンディモグリア細胞の長期表示および追跡を可能にする。さらに、Cre recombinaseやCas9などのプラスミドを単一のエペンディモグリア細胞に送達することができ、遺伝子組み換えや遺伝子編集を可能にし、制御された自然な細胞の自律遺伝子機能を評価するユニークな機会を提供します。環境。最後に、この詳細な、ステップバイステップのエレクトロポレーションプロトコルは、多数の単一のエペンディモグリア細胞へのプラスミドの正常な導入を得るために使用される。
ゼブラフィッシュは、刺し傷の損傷後の脳再生を調べる優れた動物モデルです。哺乳類と比較して、進化のはしごでは、ゼブラフィッシュのようなあまり進化した種は、一般的に構成的神経新生の高い率と成体神経幹細胞滞留のより広い領域を示し、全体で新しいニューロンの一定の生成につながります成人生活のほとんどの脳領域。この特徴は、ゼブラフィッシュが研究されたほとんどの脳損傷モデルで新しいニューロンを効率的に生成する顕著な可能性を有するように、哺乳類1と比較してゼブラフィッシュの著しく高い再生能力と相関しているように見える2、 3,4,5,6,7,8.ここでは、成人期に顕著な神経新生を有する脳領域であるため、ゼブラフィッシュテレンスファロンが研究される。成人神経新生のこれらのゾーンは、成人哺乳動物脳9、10、11における神経原ゾーンに相同である。
ゼブラフィッシュテレスファロン中の豊富な神経原領域は、細胞またはエペンディモリア細胞のような放射状グリアの存在に起因する。エペンディモグリア細胞は、常駐成人神経幹細胞として機能し、無傷および再生脳3、5の両方で新しいニューロンの生成を担当しています。系統トレース実験は、心室のエペンディモリアが傷害に反応し、増殖し、病変部位5に移行する新しい神経芽細胞を生成することを示している。ゼブラフィッシュテレスファロンの絶え間ない性質のために、エペンディモグリア細胞は心室表面に並び、心室壁を構築する。後部心室壁は、後頭形前形細胞層によって形成される(図1A)。重要なことに、ゼブラフィッシュエペンディモリアは、哺乳類の放射状グリアおよびエペンディマル細胞の両方の特性を具体化する。長い放射状プロセスは、放射状グリア細胞の典型的な特徴であるのに対し、細胞拡張およびタイトジャンクション(ならびにその心室位置)は、エペンディマル細胞12、13、14の典型的な特徴である。したがって、これらの細胞は、エペンディモグリア細胞と呼ばれる。
再生中の単一のエペンディモグリア細胞の生体内挙動に従うには、確実に標識する必要があります。蛍光顕微鏡検査用の生体内細胞標識における種々の方法は、内因性レポーターまたは親油性染料15など、以前に記載されている。これらの方法は、エレクトロポレーションとは対照的に、より長い期間の時間を必要とし、多くの場合、単一細胞標識または永久的な長期トレースの可能性を提供しない。しかし、エレクトロポレーションは(単一細胞標識の他に)、宿主細胞に新しいDNAを導入する可能性を提供する。また、細胞へのDNA移植の他の方法と比較して、エレクトロポレーションは、最も効率的な方法の一つであることが実証されている16、17、18、19。
ここで提示されるエレクトロポレーションプロトコルは、成体ゼブラフィッシュテレンセファロン中の単一のエペンディモグリア細胞を標識する目的で精製された。このプロトコルは、長期期間20にわたってそれらに従うか、または細胞自律的な方法で特定の経路を操作するために、単一のエペンディモグリア細胞の標識を可能にする21,22。
このエレクトロポレーションプロトコルは、個々のエペンディモグリア細胞を標識する生体内で信頼性の高い方法である。プロトコルは、ニューロンやオリゴデンドロサイトなどの他の細胞型にラベルを付けるために、さらなる適応が必要な場合があります。ラベリングを成功させるために、異なるプロモーターを含むプラスミドを使用することができます。チキンβアクチンプロモーター?…
The authors have nothing to disclose.
原稿の編集のためのジェームズ・コプティに特別な感謝。我々はまた、SFB 870とSPPによるドイツ研究財団(DFG)からのJNへの資金を感謝し、「オルファクションの統合分析」とSPP 1738「神経系の発達、可塑性および疾患における非コーディングRNAの新たな役割」、SPP1757グリアの異質性」、およびシステム神経学のためのミュンヘンクラスターの枠組みの中での卓越性戦略(EXC 2145 SyNergy – ID 390857198)。
Reagent/Material | |||
Fast Green | Sigma-Aldrich | F7258-25G | For coloring plasmid solution |
MS222 | Sigma-Aldrich | A5040-25G | MS222 should be stored at RT (up to two weeks) and protected from light |
Ultrasound gel | SignaGel, Parker laboratories INC. | 15-60 | Electrode Gel |
Equipment | |||
Air pump | TetraTec APS 50, 10l-60l | Can be bought in the pet shops | |
BTX Tweezertrodes Electrodes | Platinum Tweezertrode, BTX Harvard Apparatus | 45-0486 | 1mm diameter |
Electroporation device | BTX ECM830 Square Wave Electroporation System, BTX Harvard Apparatus | 45-0662 | |
Injection device | FemtoJet 4i, Eppendorf | 5252000013 | |
Standard Wall Borosillicate Glass Capillary | Warner Instruments | 64-0766 | Model No: G100-4 |
Microloader tips | Eppendorf | 5242956003 | |
Micro-knife | Fine Science Tools | 10056-12 | |
Joystick micromanipulator | Narishige Japan | MN – 151 | |
Needle holder | FemtoJet 4i, Eppendorf | 5252000013 | Needle holder comes together with the injection device |
Needle pulling device | Narishige Japan | Model No: PC-10 | The PC-10 was discontinued by Narishige in 2017 and replaced by the PC-100 |
Petri dishes | Greiner Bio-One International | 633161 |